| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to versions 6.9.13-28 and 7.1.2-2 for ImageMagick's 32-bit build, a 32-bit integer overflow in the BMP encoder’s scanline-stride computation collapses bytes_per_line (stride) to a tiny value while the per-row writer still emits 3 × width bytes for 24-bpp images. The row base pointer advances using the (overflowed) stride, so the first row immediately writes past its slot and into adjacent heap memory with attacker-controlled bytes. This is a classic, powerful primitive for heap corruption in common auto-convert pipelines. This issue has been patched in versions 6.9.13-28 and 7.1.2-2. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to versions 6.9.13-27 and 7.1.2-1, the magnified size calculations in ReadOneMNGIMage (in coders/png.c) are unsafe and can overflow, leading to memory corruption. This issue has been patched in versions 6.9.13-27 and 7.1.2-1. |
| An integer overflow vulnerability exists in the ABF parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted ABF file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| An integer overflow vulnerability exists in the GDF parsing functionality of The Biosig Project libbiosig 3.9.0 and Master Branch (35a819fa). A specially crafted GDF file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability. |
| Integer overflow in the SVG component. This vulnerability affects Firefox < 143, Firefox ESR < 115.28, Firefox ESR < 140.3, Thunderbird < 143, and Thunderbird < 140.3. |
| ImageMagick is an open source software suite for displaying, converting, and editing raster image files. In ImageMagick versions prior to 7.1.2-7 and 6.9.13-32, an integer overflow vulnerability exists in the BMP decoder on 32-bit systems. The vulnerability occurs in coders/bmp.c when calculating the extent value by multiplying image columns by bits per pixel. On 32-bit systems with size_t of 4 bytes, a malicious BMP file with specific dimensions can cause this multiplication to overflow and wrap to zero. The overflow check added to address CVE-2025-57803 is placed after the overflow occurs, making it ineffective. A specially crafted 58-byte BMP file with width set to 536,870,912 and 32 bits per pixel can trigger this overflow, causing the bytes_per_line calculation to become zero. This vulnerability only affects 32-bit builds of ImageMagick where default resource limits for width, height, and area have been manually increased beyond their defaults. 64-bit systems with size_t of 8 bytes are not vulnerable, and systems using default ImageMagick resource limits are not vulnerable. The vulnerability is fixed in versions 7.1.2-7 and 6.9.13-32. |
| GIMP ICO File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of ICO files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before writing to memory. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26752. |
| GIMP XWD File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of GIMP. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of XWD files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25082. |
| FastCGI fcgi2 (aka fcgi) 2.x through 2.4.4 has an integer overflow (and resultant heap-based buffer overflow) via crafted nameLen or valueLen values in data to the IPC socket. This occurs in ReadParams in fcgiapp.c. |
| sysstat through 12.7.2 allows a multiplication integer overflow in check_overflow in common.c. NOTE: this issue exists because of an incomplete fix for CVE-2022-39377. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix page_size variable overflow
Change all variables storing mlx5_umem_mkc_find_best_pgsz() result to
unsigned long to support values larger than 31 and avoid overflow.
For example: If we try to register 4GB of memory that is contiguous in
physical memory, the driver will optimize the page_size and try to use
an mkey with 4GB entity size. The 'unsigned int' page_size variable will
overflow to '0' and we'll hit the WARN_ON() in alloc_cacheable_mr().
WARNING: CPU: 2 PID: 1203 at drivers/infiniband/hw/mlx5/mr.c:1124 alloc_cacheable_mr+0x22/0x580 [mlx5_ib]
Modules linked in: mlx5_ib mlx5_core bonding ip6_gre ip6_tunnel tunnel6 ip_gre gre rdma_rxe rdma_ucm ib_uverbs ib_ipoib ib_umad rpcrdma ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm fuse ib_core [last unloaded: mlx5_core]
CPU: 2 UID: 70878 PID: 1203 Comm: rdma_resource_l Tainted: G W 6.14.0-rc4-dirty #43
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:alloc_cacheable_mr+0x22/0x580 [mlx5_ib]
Code: 90 90 90 90 90 90 90 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 41 55 41 54 41 52 53 48 83 ec 30 f6 46 28 04 4c 8b 77 08 75 21 <0f> 0b 49 c7 c2 ea ff ff ff 48 8d 65 d0 4c 89 d0 5b 41 5a 41 5c 41
RSP: 0018:ffffc900006ffac8 EFLAGS: 00010246
RAX: 0000000004c0d0d0 RBX: ffff888217a22000 RCX: 0000000000100001
RDX: 00007fb7ac480000 RSI: ffff8882037b1240 RDI: ffff8882046f0600
RBP: ffffc900006ffb28 R08: 0000000000000001 R09: 0000000000000000
R10: 00000000000007e0 R11: ffffea0008011d40 R12: ffff8882037b1240
R13: ffff8882046f0600 R14: ffff888217a22000 R15: ffffc900006ffe00
FS: 00007fb7ed013340(0000) GS:ffff88885fd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fb7ed1d8000 CR3: 00000001fd8f6006 CR4: 0000000000772eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
? __warn+0x81/0x130
? alloc_cacheable_mr+0x22/0x580 [mlx5_ib]
? report_bug+0xfc/0x1e0
? handle_bug+0x55/0x90
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? alloc_cacheable_mr+0x22/0x580 [mlx5_ib]
create_real_mr+0x54/0x150 [mlx5_ib]
ib_uverbs_reg_mr+0x17f/0x2a0 [ib_uverbs]
ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0xca/0x140 [ib_uverbs]
ib_uverbs_run_method+0x6d0/0x780 [ib_uverbs]
? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs]
ib_uverbs_cmd_verbs+0x19b/0x360 [ib_uverbs]
? walk_system_ram_range+0x79/0xd0
? ___pte_offset_map+0x1b/0x110
? __pte_offset_map_lock+0x80/0x100
ib_uverbs_ioctl+0xac/0x110 [ib_uverbs]
__x64_sys_ioctl+0x94/0xb0
do_syscall_64+0x50/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fb7ecf0737b
Code: ff ff ff 85 c0 79 9b 49 c7 c4 ff ff ff ff 5b 5d 4c 89 e0 41 5c c3 66 0f 1f 84 00 00 00 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 7d 2a 0f 00 f7 d8 64 89 01 48
RSP: 002b:00007ffdbe03ecc8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007ffdbe03edb8 RCX: 00007fb7ecf0737b
RDX: 00007ffdbe03eda0 RSI: 00000000c0181b01 RDI: 0000000000000003
RBP: 00007ffdbe03ed80 R08: 00007fb7ecc84010 R09: 00007ffdbe03eed4
R10: 0000000000000009 R11: 0000000000000246 R12: 00007ffdbe03eed4
R13: 000000000000000c R14: 000000000000000c R15: 00007fb7ecc84150
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: Fix overflow before widen in the bitmap_ip_create() function.
When first_ip is 0, last_ip is 0xFFFFFFFF, and netmask is 31, the value of
an arithmetic expression 2 << (netmask - mask_bits - 1) is subject
to overflow due to a failure casting operands to a larger data type
before performing the arithmetic.
Note that it's harmless since the value will be checked at the next step.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with SVACE. |
| Windows Graphics Component Remote Code Execution Vulnerability |
| Visual Studio Remote Code Execution Vulnerability |
| Windows Kernel Elevation of Privilege Vulnerability |
| Windows Kernel Elevation of Privilege Vulnerability |
| Sandbox escape due to integer overflow in the Graphics: Canvas2D component. This vulnerability affects Firefox < 143.0.3. |
| A vulnerability was identified in the handling of Bluetooth Low Energy (BLE) fixed channels (such as SMP or ATT). Specifically, an attacker could exploit a flaw that causes the BLE target (i.e., the device under attack) to attempt to disconnect a fixed channel, which is not allowed per the Bluetooth specification. This leads to undefined behavior, including potential assertion failures, crashes, or memory corruption, depending on the BLE stack implementation. |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). The supported version that is affected is 7.1.6. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle VM VirtualBox accessible data as well as unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.1 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:L). |
| In the Linux kernel, the following vulnerability has been resolved:
Squashfs: fix handling and sanity checking of xattr_ids count
A Sysbot [1] corrupted filesystem exposes two flaws in the handling and
sanity checking of the xattr_ids count in the filesystem. Both of these
flaws cause computation overflow due to incorrect typing.
In the corrupted filesystem the xattr_ids value is 4294967071, which
stored in a signed variable becomes the negative number -225.
Flaw 1 (64-bit systems only):
The signed integer xattr_ids variable causes sign extension.
This causes variable overflow in the SQUASHFS_XATTR_*(A) macros. The
variable is first multiplied by sizeof(struct squashfs_xattr_id) where the
type of the sizeof operator is "unsigned long".
On a 64-bit system this is 64-bits in size, and causes the negative number
to be sign extended and widened to 64-bits and then become unsigned. This
produces the very large number 18446744073709548016 or 2^64 - 3600. This
number when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and
divided by SQUASHFS_METADATA_SIZE overflows and produces a length of 0
(stored in len).
Flaw 2 (32-bit systems only):
On a 32-bit system the integer variable is not widened by the unsigned
long type of the sizeof operator (32-bits), and the signedness of the
variable has no effect due it always being treated as unsigned.
The above corrupted xattr_ids value of 4294967071, when multiplied
overflows and produces the number 4294963696 or 2^32 - 3400. This number
when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and divided by
SQUASHFS_METADATA_SIZE overflows again and produces a length of 0.
The effect of the 0 length computation:
In conjunction with the corrupted xattr_ids field, the filesystem also has
a corrupted xattr_table_start value, where it matches the end of
filesystem value of 850.
This causes the following sanity check code to fail because the
incorrectly computed len of 0 matches the incorrect size of the table
reported by the superblock (0 bytes).
len = SQUASHFS_XATTR_BLOCK_BYTES(*xattr_ids);
indexes = SQUASHFS_XATTR_BLOCKS(*xattr_ids);
/*
* The computed size of the index table (len bytes) should exactly
* match the table start and end points
*/
start = table_start + sizeof(*id_table);
end = msblk->bytes_used;
if (len != (end - start))
return ERR_PTR(-EINVAL);
Changing the xattr_ids variable to be "usigned int" fixes the flaw on a
64-bit system. This relies on the fact the computation is widened by the
unsigned long type of the sizeof operator.
Casting the variable to u64 in the above macro fixes this flaw on a 32-bit
system.
It also means 64-bit systems do not implicitly rely on the type of the
sizeof operator to widen the computation.
[1] https://lore.kernel.org/lkml/000000000000cd44f005f1a0f17f@google.com/ |