| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: replace BUG_ON with bounds check for map->max_osd
OSD indexes come from untrusted network packets. Boundary checks are
added to validate these against map->max_osd.
[ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic
edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: delete radeon_fence_process in is_signaled, no deadlock
Delete the attempt to progress the queue when checking if fence is
signaled. This avoids deadlock.
dma-fence_ops::signaled can be called with the fence lock in unknown
state. For radeon, the fence lock is also the wait queue lock. This can
cause a self deadlock when signaled() tries to make forward progress on
the wait queue. But advancing the queue is unneeded because incorrectly
returning false from signaled() is perfectly acceptable.
(cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db) |
| In the Linux kernel, the following vulnerability has been resolved:
udp_tunnel: use netdev_warn() instead of netdev_WARN()
netdev_WARN() uses WARN/WARN_ON to print a backtrace along with
file and line information. In this case, udp_tunnel_nic_register()
returning an error is just a failed operation, not a kernel bug.
udp_tunnel_nic_register() can fail due to a memory allocation
failure (kzalloc() or udp_tunnel_nic_alloc()).
This is a normal runtime error and not a kernel bug.
Replace netdev_WARN() with netdev_warn() accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: use dst_dev_rcu() in tcp_fastopen_active_disable_ofo_check()
Use RCU to avoid a pair of atomic operations and a potential
UAF on dst_dev()->flags. |
| In the Linux kernel, the following vulnerability has been resolved:
nfs4_setup_readdir(): insufficient locking for ->d_parent->d_inode dereferencing
Theoretically it's an oopsable race, but I don't believe one can manage
to hit it on real hardware; might become doable on a KVM, but it still
won't be easy to attack.
Anyway, it's easy to deal with - since xdr_encode_hyper() is just a call of
put_unaligned_be64(), we can put that under ->d_lock and be done with that. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv6: fix field-spanning memcpy warning in AH output
Fix field-spanning memcpy warnings in ah6_output() and
ah6_output_done() where extension headers are copied to/from IPv6
address fields, triggering fortify-string warnings about writes beyond
the 16-byte address fields.
memcpy: detected field-spanning write (size 40) of single field "&top_iph->saddr" at net/ipv6/ah6.c:439 (size 16)
WARNING: CPU: 0 PID: 8838 at net/ipv6/ah6.c:439 ah6_output+0xe7e/0x14e0 net/ipv6/ah6.c:439
The warnings are false positives as the extension headers are
intentionally placed after the IPv6 header in memory. Fix by properly
copying addresses and extension headers separately, and introduce
helper functions to avoid code duplication. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mte: Do not warn if the page is already tagged in copy_highpage()
The arm64 copy_highpage() assumes that the destination page is newly
allocated and not MTE-tagged (PG_mte_tagged unset) and warns
accordingly. However, following commit 060913999d7a ("mm: migrate:
support poisoned recover from migrate folio"), folio_mc_copy() is called
before __folio_migrate_mapping(). If the latter fails (-EAGAIN), the
copy will be done again to the same destination page. Since
copy_highpage() already set the PG_mte_tagged flag, this second copy
will warn.
Replace the WARN_ON_ONCE(page already tagged) in the arm64
copy_highpage() with a comment. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: storage: sddr55: Reject out-of-bound new_pba
Discovered by Atuin - Automated Vulnerability Discovery Engine.
new_pba comes from the status packet returned after each write.
A bogus device could report values beyond the block count derived
from info->capacity, letting the driver walk off the end of
pba_to_lba[] and corrupt heap memory.
Reject PBAs that exceed the computed block count and fail the
transfer so we avoid touching out-of-range mapping entries. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Do not share the name pointer between components
By sharing 'name' directly, tearing down components may lead to
use-after-free errors. Duplicate the name to avoid that.
At the same time, update the order of operations - since commit
cee28113db17 ("ASoC: dmaengine_pcm: Allow passing component name via
config") the framework does not override component->name if set before
invoking the initializer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gpusvm: fix hmm_pfn_to_map_order() usage
Handle the case where the hmm range partially covers a huge page (like
2M), otherwise we can potentially end up doing something nasty like
mapping memory which is outside the range, and maybe not even mapped by
the mm. Fix is based on the xe userptr code, which in a future patch
will directly use gpusvm, so needs alignment here.
v2:
- Add kernel-doc (Matt B)
- s/fls/ilog2/ (Thomas) |
| In the Linux kernel, the following vulnerability has been resolved:
fbcon: Set fb_display[i]->mode to NULL when the mode is released
Recently, we discovered the following issue through syzkaller:
BUG: KASAN: slab-use-after-free in fb_mode_is_equal+0x285/0x2f0
Read of size 4 at addr ff11000001b3c69c by task syz.xxx
...
Call Trace:
<TASK>
dump_stack_lvl+0xab/0xe0
print_address_description.constprop.0+0x2c/0x390
print_report+0xb9/0x280
kasan_report+0xb8/0xf0
fb_mode_is_equal+0x285/0x2f0
fbcon_mode_deleted+0x129/0x180
fb_set_var+0xe7f/0x11d0
do_fb_ioctl+0x6a0/0x750
fb_ioctl+0xe0/0x140
__x64_sys_ioctl+0x193/0x210
do_syscall_64+0x5f/0x9c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Based on experimentation and analysis, during framebuffer unregistration,
only the memory of fb_info->modelist is freed, without setting the
corresponding fb_display[i]->mode to NULL for the freed modes. This leads
to UAF issues during subsequent accesses. Here's an example of reproduction
steps:
1. With /dev/fb0 already registered in the system, load a kernel module
to register a new device /dev/fb1;
2. Set fb1's mode to the global fb_display[] array (via FBIOPUT_CON2FBMAP);
3. Switch console from fb to VGA (to allow normal rmmod of the ko);
4. Unload the kernel module, at this point fb1's modelist is freed, leaving
a wild pointer in fb_display[];
5. Trigger the bug via system calls through fb0 attempting to delete a mode
from fb0.
Add a check in do_unregister_framebuffer(): if the mode to be freed exists
in fb_display[], set the corresponding mode pointer to NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: bitblit: bound-check glyph index in bit_putcs*
bit_putcs_aligned()/unaligned() derived the glyph pointer from the
character value masked by 0xff/0x1ff, which may exceed the actual font's
glyph count and read past the end of the built-in font array.
Clamp the index to the actual glyph count before computing the address.
This fixes a global out-of-bounds read reported by syzbot. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Verify inode mode when loading from disk
The inode mode loaded from corrupted disk can be invalid. Do like what
commit 0a9e74051313 ("isofs: Verify inode mode when loading from disk")
does. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: bcsp: receive data only if registered
Currently, bcsp_recv() can be called even when the BCSP protocol has not
been registered. This leads to a NULL pointer dereference, as shown in
the following stack trace:
KASAN: null-ptr-deref in range [0x0000000000000108-0x000000000000010f]
RIP: 0010:bcsp_recv+0x13d/0x1740 drivers/bluetooth/hci_bcsp.c:590
Call Trace:
<TASK>
hci_uart_tty_receive+0x194/0x220 drivers/bluetooth/hci_ldisc.c:627
tiocsti+0x23c/0x2c0 drivers/tty/tty_io.c:2290
tty_ioctl+0x626/0xde0 drivers/tty/tty_io.c:2706
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
To prevent this, ensure that the HCI_UART_REGISTERED flag is set before
processing received data. If the protocol is not registered, return
-EUNATCH. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Add bounds checking in bit_putcs to fix vmalloc-out-of-bounds
Add bounds checking to prevent writes past framebuffer boundaries when
rendering text near screen edges. Return early if the Y position is off-screen
and clip image height to screen boundary. Break from the rendering loop if the
X position is off-screen. When clipping image width to fit the screen, update
the character count to match the clipped width to prevent buffer size
mismatches.
Without the character count update, bit_putcs_aligned and bit_putcs_unaligned
receive mismatched parameters where the buffer is allocated for the clipped
width but cnt reflects the original larger count, causing out-of-bounds writes. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/proc: fix uaf in proc_readdir_de()
Pde is erased from subdir rbtree through rb_erase(), but not set the node
to EMPTY, which may result in uaf access. We should use RB_CLEAR_NODE()
set the erased node to EMPTY, then pde_subdir_next() will return NULL to
avoid uaf access.
We found an uaf issue while using stress-ng testing, need to run testcase
getdent and tun in the same time. The steps of the issue is as follows:
1) use getdent to traverse dir /proc/pid/net/dev_snmp6/, and current
pde is tun3;
2) in the [time windows] unregister netdevice tun3 and tun2, and erase
them from rbtree. erase tun3 first, and then erase tun2. the
pde(tun2) will be released to slab;
3) continue to getdent process, then pde_subdir_next() will return
pde(tun2) which is released, it will case uaf access.
CPU 0 | CPU 1
-------------------------------------------------------------------------
traverse dir /proc/pid/net/dev_snmp6/ | unregister_netdevice(tun->dev) //tun3 tun2
sys_getdents64() |
iterate_dir() |
proc_readdir() |
proc_readdir_de() | snmp6_unregister_dev()
pde_get(de); | proc_remove()
read_unlock(&proc_subdir_lock); | remove_proc_subtree()
| write_lock(&proc_subdir_lock);
[time window] | rb_erase(&root->subdir_node, &parent->subdir);
| write_unlock(&proc_subdir_lock);
read_lock(&proc_subdir_lock); |
next = pde_subdir_next(de); |
pde_put(de); |
de = next; //UAF |
rbtree of dev_snmp6
|
pde(tun3)
/ \
NULL pde(tun2) |
| In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix KMSAN uninit-value issue in __hfsplus_ext_cache_extent()
The syzbot reported issue in __hfsplus_ext_cache_extent():
[ 70.194323][ T9350] BUG: KMSAN: uninit-value in __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.195022][ T9350] __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.195530][ T9350] hfsplus_file_extend+0x74f/0x1cf0
[ 70.195998][ T9350] hfsplus_get_block+0xe16/0x17b0
[ 70.196458][ T9350] __block_write_begin_int+0x962/0x2ce0
[ 70.196959][ T9350] cont_write_begin+0x1000/0x1950
[ 70.197416][ T9350] hfsplus_write_begin+0x85/0x130
[ 70.197873][ T9350] generic_perform_write+0x3e8/0x1060
[ 70.198374][ T9350] __generic_file_write_iter+0x215/0x460
[ 70.198892][ T9350] generic_file_write_iter+0x109/0x5e0
[ 70.199393][ T9350] vfs_write+0xb0f/0x14e0
[ 70.199771][ T9350] ksys_write+0x23e/0x490
[ 70.200149][ T9350] __x64_sys_write+0x97/0xf0
[ 70.200570][ T9350] x64_sys_call+0x3015/0x3cf0
[ 70.201065][ T9350] do_syscall_64+0xd9/0x1d0
[ 70.201506][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.202054][ T9350]
[ 70.202279][ T9350] Uninit was created at:
[ 70.202693][ T9350] __kmalloc_noprof+0x621/0xf80
[ 70.203149][ T9350] hfsplus_find_init+0x8d/0x1d0
[ 70.203602][ T9350] hfsplus_file_extend+0x6ca/0x1cf0
[ 70.204087][ T9350] hfsplus_get_block+0xe16/0x17b0
[ 70.204561][ T9350] __block_write_begin_int+0x962/0x2ce0
[ 70.205074][ T9350] cont_write_begin+0x1000/0x1950
[ 70.205547][ T9350] hfsplus_write_begin+0x85/0x130
[ 70.206017][ T9350] generic_perform_write+0x3e8/0x1060
[ 70.206519][ T9350] __generic_file_write_iter+0x215/0x460
[ 70.207042][ T9350] generic_file_write_iter+0x109/0x5e0
[ 70.207552][ T9350] vfs_write+0xb0f/0x14e0
[ 70.207961][ T9350] ksys_write+0x23e/0x490
[ 70.208375][ T9350] __x64_sys_write+0x97/0xf0
[ 70.208810][ T9350] x64_sys_call+0x3015/0x3cf0
[ 70.209255][ T9350] do_syscall_64+0xd9/0x1d0
[ 70.209680][ T9350] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 70.210230][ T9350]
[ 70.210454][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Not tainted 6.12.0-rc5 #5
[ 70.211174][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.212115][ T9350] =====================================================
[ 70.212734][ T9350] Disabling lock debugging due to kernel taint
[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic set ...
[ 70.213858][ T9350] CPU: 2 UID: 0 PID: 9350 Comm: repro Tainted: G B 6.12.0-rc5 #5
[ 70.214679][ T9350] Tainted: [B]=BAD_PAGE
[ 70.215057][ T9350] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 70.215999][ T9350] Call Trace:
[ 70.216309][ T9350] <TASK>
[ 70.216585][ T9350] dump_stack_lvl+0x1fd/0x2b0
[ 70.217025][ T9350] dump_stack+0x1e/0x30
[ 70.217421][ T9350] panic+0x502/0xca0
[ 70.217803][ T9350] ? kmsan_get_metadata+0x13e/0x1c0
[ 70.218294][ Message fromT sy9350] kmsan_report+0x296/slogd@syzkaller 0x2aat Aug 18 22:11:058 ...
kernel
:[ 70.213284][ T9350] Kernel panic - not syncing: kmsan.panic [ 70.220179][ T9350] ? kmsan_get_metadata+0x13e/0x1c0
set ...
[ 70.221254][ T9350] ? __msan_warning+0x96/0x120
[ 70.222066][ T9350] ? __hfsplus_ext_cache_extent+0x7d0/0x990
[ 70.223023][ T9350] ? hfsplus_file_extend+0x74f/0x1cf0
[ 70.224120][ T9350] ? hfsplus_get_block+0xe16/0x17b0
[ 70.224946][ T9350] ? __block_write_begin_int+0x962/0x2ce0
[ 70.225756][ T9350] ? cont_write_begin+0x1000/0x1950
[ 70.226337][ T9350] ? hfsplus_write_begin+0x85/0x130
[ 70.226852][ T9350] ? generic_perform_write+0x3e8/0x1060
[ 70.227405][ T9350] ? __generic_file_write_iter+0x215/0x460
[ 70.227979][ T9350] ? generic_file_write_iter+0x109/0x5e0
[ 70.228540][ T9350] ? vfs_write+0xb0f/0x14e0
[ 70.228997][ T9350] ? ksys_write+0x23e/0x490
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix unlikely race in gdlm_put_lock
In gdlm_put_lock(), there is a small window of time in which the
DFL_UNMOUNT flag has been set but the lockspace hasn't been released,
yet. In that window, dlm may still call gdlm_ast() and gdlm_bast().
To prevent it from dereferencing freed glock objects, only free the
glock if the lockspace has actually been released. |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "NFSD: Remove the cap on number of operations per NFSv4 COMPOUND"
I've found that pynfs COMP6 now leaves the connection or lease in a
strange state, which causes CLOSE9 to hang indefinitely. I've dug
into it a little, but I haven't been able to root-cause it yet.
However, I bisected to commit 48aab1606fa8 ("NFSD: Remove the cap on
number of operations per NFSv4 COMPOUND").
Tianshuo Han also reports a potential vulnerability when decoding
an NFSv4 COMPOUND. An attacker can place an arbitrarily large op
count in the COMPOUND header, which results in:
[ 51.410584] nfsd: vmalloc error: size 1209533382144, exceeds total
pages, mode:0xdc0(GFP_KERNEL|__GFP_ZERO),
nodemask=(null),cpuset=/,mems_allowed=0
when NFSD attempts to allocate the COMPOUND op array.
Let's restore the operation-per-COMPOUND limit, but increased to 200
for now. |
| In the Linux kernel, the following vulnerability has been resolved:
pid: Add a judgment for ns null in pid_nr_ns
__task_pid_nr_ns
ns = task_active_pid_ns(current);
pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
if (pid && ns->level <= pid->level) {
Sometimes null is returned for task_active_pid_ns. Then it will trigger kernel panic in pid_nr_ns.
For example:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000058
Mem abort info:
ESR = 0x0000000096000007
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x07: level 3 translation fault
Data abort info:
ISV = 0, ISS = 0x00000007, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 39-bit VAs, pgdp=00000002175aa000
[0000000000000058] pgd=08000002175ab003, p4d=08000002175ab003, pud=08000002175ab003, pmd=08000002175be003, pte=0000000000000000
pstate: 834000c5 (Nzcv daIF +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
pc : __task_pid_nr_ns+0x74/0xd0
lr : __task_pid_nr_ns+0x24/0xd0
sp : ffffffc08001bd10
x29: ffffffc08001bd10 x28: ffffffd4422b2000 x27: 0000000000000001
x26: ffffffd442821168 x25: ffffffd442821000 x24: 00000f89492eab31
x23: 00000000000000c0 x22: ffffff806f5693c0 x21: ffffff806f5693c0
x20: 0000000000000001 x19: 0000000000000000 x18: 0000000000000000
x17: 00000000529c6ef0 x16: 00000000529c6ef0 x15: 00000000023a1adc
x14: 0000000000000003 x13: 00000000007ef6d8 x12: 001167c391c78800
x11: 00ffffffffffffff x10: 0000000000000000 x9 : 0000000000000001
x8 : ffffff80816fa3c0 x7 : 0000000000000000 x6 : 49534d702d535449
x5 : ffffffc080c4c2c0 x4 : ffffffd43ee128c8 x3 : ffffffd43ee124dc
x2 : 0000000000000000 x1 : 0000000000000001 x0 : ffffff806f5693c0
Call trace:
__task_pid_nr_ns+0x74/0xd0
...
__handle_irq_event_percpu+0xd4/0x284
handle_irq_event+0x48/0xb0
handle_fasteoi_irq+0x160/0x2d8
generic_handle_domain_irq+0x44/0x60
gic_handle_irq+0x4c/0x114
call_on_irq_stack+0x3c/0x74
do_interrupt_handler+0x4c/0x84
el1_interrupt+0x34/0x58
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x68/0x6c
account_kernel_stack+0x60/0x144
exit_task_stack_account+0x1c/0x80
do_exit+0x7e4/0xaf8
...
get_signal+0x7bc/0x8d8
do_notify_resume+0x128/0x828
el0_svc+0x6c/0x70
el0t_64_sync_handler+0x68/0xbc
el0t_64_sync+0x1a8/0x1ac
Code: 35fffe54 911a02a8 f9400108 b4000128 (b9405a69)
---[ end trace 0000000000000000 ]---
Kernel panic - not syncing: Oops: Fatal exception in interrupt |