| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Roundcube Webmail before 1.5.12 and 1.6 before 1.6.12 is prone to a Cross-Site-Scripting (XSS) vulnerability via the animate tag in an SVG document. |
| Langflow is a tool for building and deploying AI-powered agents and workflows. Prior to version 1.7.0, Langflow provides an API Request component that can issue arbitrary HTTP requests within a flow. This component takes a user-supplied URL, performs only normalization and basic format checks, and then sends the request using a server-side httpx client. It does not block private IP ranges (127[.]0[.]0[.]1, the 10/172/192 ranges) or cloud metadata endpoints (169[.]254[.]169[.]254), and it returns the response body as the result. Because the flow execution endpoints (/api/v1/run, /api/v1/run/advanced) can be invoked with just an API key, if an attacker can control the API Request URL in a flow, non-blind SSRF is possible—accessing internal resources from the server’s network context. This enables requests to, and collection of responses from, internal administrative endpoints, metadata services, and internal databases/services, leading to information disclosure and providing a foothold for further attacks. Version 1.7.0 contains a patch for this issue. |
| Langflow is a tool for building and deploying AI-powered agents and workflows. Prior to version 1.7.0, if an arbitrary path is specified in the request body's `fs_path`, the server serializes the Flow object into JSON and creates/overwrites a file at that path. There is no path restriction, normalization, or allowed directory enforcement, so absolute paths (e.g., /etc/poc.txt) are interpreted as is. Version 1.7.0 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix UAF on sco_conn_free
BUG: KASAN: slab-use-after-free in sco_conn_free net/bluetooth/sco.c:87 [inline]
BUG: KASAN: slab-use-after-free in kref_put include/linux/kref.h:65 [inline]
BUG: KASAN: slab-use-after-free in sco_conn_put+0xdd/0x410
net/bluetooth/sco.c:107
Write of size 8 at addr ffff88811cb96b50 by task kworker/u17:4/352
CPU: 1 UID: 0 PID: 352 Comm: kworker/u17:4 Not tainted
6.17.0-rc5-g717368f83676 #4 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Workqueue: hci13 hci_cmd_sync_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x10b/0x170 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x191/0x550 mm/kasan/report.c:482
kasan_report+0xc4/0x100 mm/kasan/report.c:595
sco_conn_free net/bluetooth/sco.c:87 [inline]
kref_put include/linux/kref.h:65 [inline]
sco_conn_put+0xdd/0x410 net/bluetooth/sco.c:107
sco_connect_cfm+0xb4/0xae0 net/bluetooth/sco.c:1441
hci_connect_cfm include/net/bluetooth/hci_core.h:2082 [inline]
hci_conn_failed+0x20a/0x2e0 net/bluetooth/hci_conn.c:1313
hci_conn_unlink+0x55f/0x810 net/bluetooth/hci_conn.c:1121
hci_conn_del+0xb6/0x1110 net/bluetooth/hci_conn.c:1147
hci_abort_conn_sync+0x8c5/0xbb0 net/bluetooth/hci_sync.c:5689
hci_cmd_sync_work+0x281/0x380 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0x77e/0x1040 kernel/workqueue.c:3319
worker_thread+0xbee/0x1200 kernel/workqueue.c:3400
kthread+0x3c7/0x870 kernel/kthread.c:463
ret_from_fork+0x13a/0x1e0 arch/x86/kernel/process.c:148
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 31370:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x30/0x70 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:388 [inline]
__kasan_kmalloc+0x82/0x90 mm/kasan/common.c:405
kasan_kmalloc include/linux/kasan.h:260 [inline]
__do_kmalloc_node mm/slub.c:4382 [inline]
__kmalloc_noprof+0x22f/0x390 mm/slub.c:4394
kmalloc_noprof include/linux/slab.h:909 [inline]
sk_prot_alloc+0xae/0x220 net/core/sock.c:2239
sk_alloc+0x34/0x5a0 net/core/sock.c:2295
bt_sock_alloc+0x3c/0x330 net/bluetooth/af_bluetooth.c:151
sco_sock_alloc net/bluetooth/sco.c:562 [inline]
sco_sock_create+0xc0/0x350 net/bluetooth/sco.c:593
bt_sock_create+0x161/0x3b0 net/bluetooth/af_bluetooth.c:135
__sock_create+0x3ad/0x780 net/socket.c:1589
sock_create net/socket.c:1647 [inline]
__sys_socket_create net/socket.c:1684 [inline]
__sys_socket+0xd5/0x330 net/socket.c:1731
__do_sys_socket net/socket.c:1745 [inline]
__se_sys_socket net/socket.c:1743 [inline]
__x64_sys_socket+0x7a/0x90 net/socket.c:1743
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xc7/0x240 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 31374:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x30/0x70 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:576
poison_slab_object mm/kasan/common.c:243 [inline]
__kasan_slab_free+0x3d/0x50 mm/kasan/common.c:275
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2428 [inline]
slab_free mm/slub.c:4701 [inline]
kfree+0x199/0x3b0 mm/slub.c:4900
sk_prot_free net/core/sock.c:2278 [inline]
__sk_destruct+0x4aa/0x630 net/core/sock.c:2373
sco_sock_release+0x2ad/0x300 net/bluetooth/sco.c:1333
__sock_release net/socket.c:649 [inline]
sock_close+0xb8/0x230 net/socket.c:1439
__fput+0x3d1/0x9e0 fs/file_table.c:468
task_work_run+0x206/0x2a0 kernel/task_work.c:227
get_signal+0x1201/0x1410 kernel/signal.c:2807
arch_do_signal_or_restart+0x34/0x740 arch/x86/kernel/signal.c:337
exit_to_user_mode_loop+0x68/0xc0 kernel/entry/common.c:40
exit_to_user_mode_prepare include/linux/irq-entry-common.h:225 [inline]
s
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
9p/trans_fd: p9_fd_request: kick rx thread if EPOLLIN
p9_read_work() doesn't set Rworksched and doesn't do schedule_work(m->rq)
if list_empty(&m->req_list).
However, if the pipe is full, we need to read more data and this used to
work prior to commit aaec5a95d59615 ("pipe_read: don't wake up the writer
if the pipe is still full").
p9_read_work() does p9_fd_read() -> ... -> anon_pipe_read() which (before
the commit above) triggered the unnecessary wakeup. This wakeup calls
p9_pollwake() which kicks p9_poll_workfn() -> p9_poll_mux(), p9_poll_mux()
will notice EPOLLIN and schedule_work(&m->rq).
This no longer happens after the optimization above, change p9_fd_request()
to use p9_poll_mux() instead of only checking for EPOLLOUT. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential overflow of PCM transfer buffer
The PCM stream data in USB-audio driver is transferred over USB URB
packet buffers, and each packet size is determined dynamically. The
packet sizes are limited by some factors such as wMaxPacketSize USB
descriptor. OTOH, in the current code, the actually used packet sizes
are determined only by the rate and the PPS, which may be bigger than
the size limit above. This results in a buffer overflow, as reported
by syzbot.
Basically when the limit is smaller than the calculated packet size,
it implies that something is wrong, most likely a weird USB
descriptor. So the best option would be just to return an error at
the parameter setup time before doing any further operations.
This patch introduces such a sanity check, and returns -EINVAL when
the packet size is greater than maxpacksize. The comparison with
ep->packsize[1] alone should suffice since it's always equal or
greater than ep->packsize[0]. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: increase scan_ies_len for S1G
Currently the S1G capability element is not taken into account
for the scan_ies_len, which leads to a buffer length validation
failure in ieee80211_prep_hw_scan() and subsequent WARN in
__ieee80211_start_scan(). This prevents hw scanning from functioning.
To fix ensure we accommodate for the S1G capability length. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent NULL pointer dereference in UTF16 conversion
There can be a NULL pointer dereference bug here. NULL is passed to
__cifs_sfu_make_node without checks, which passes it unchecked to
cifs_strndup_to_utf16, which in turn passes it to
cifs_local_to_utf16_bytes where '*from' is dereferenced, causing a crash.
This patch adds a check for NULL 'src' in cifs_strndup_to_utf16 and
returns NULL early to prevent dereferencing NULL pointer.
Found by Linux Verification Center (linuxtesting.org) with SVACE |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| Plex Media Server (PMS) 1.41.7.x through 1.42.0.x before 1.42.1 is affected by incorrect resource transfer between spheres because /myplex/account provides the credentials of the server owner (and a /api/resources call reveals other servers accessible by that server owner). |
| A Server-Side Template Injection (SSTI) vulnerability in the MDX Rendering Engine in Mintlify Platform before 2025-11-15 allows remote attackers to execute arbitrary code via inline JSX expressions in an MDX file. |
| A Server-Side Request Forgery (SSRF) vulnerability was discovered in the webpage-to-markdown conversion feature of markdownify-mcp v0.0.2 and before. This vulnerability allows an attacker to bypass private IP restrictions through hostname-based bypass and HTTP redirect chains, enabling access to internal network services. |
| fetch-mcp v1.0.2 and before is vulnerable to Server-Side Request Forgery (SSRF) vulnerability, which allows attackers to bypass private IP validation and access internal network resources. |
| Fickling is a Python pickling decompiler and static analyzer. Versions prior to 0.1.6 are missing `marshal` and `types` from the block list of unsafe module imports. Fickling started blocking both modules to address this issue. This allows an attacker to craft a malicious pickle file that can bypass fickling since it misses detections for `types.FunctionType` and `marshal.loads`. A user who deserializes such a file, believing it to be safe, would inadvertently execute arbitrary code on their system. This impacts any user or system that uses Fickling to vet pickle files for security issues. The issue was fixed in version 0.1.6. |
| Fickling is a Python pickling decompiler and static analyzer. Versions prior to 0.1.6 had a bypass caused by `pty` missing from the block list of unsafe module imports. This led to unsafe pickles based on `pty.spawn()` being incorrectly flagged as `LIKELY_SAFE`, and was fixed in version 0.1.6. This impacted any user or system that used Fickling to vet pickle files for security issues. |
| An issue was discovered in K7 Ultimate Security 17.0.2045. A Local Privilege Escalation (LPE) vulnerability in the K7 Ultimate Security antivirus can be exploited by a local unprivileged user on default installations of the product. Insecure access to a named pipe allows unprivileged users to edit any registry key, leading to a full compromise as SYSTEM. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash in process_v2_sparse_read() for encrypted directories
The crash in process_v2_sparse_read() for fscrypt-encrypted directories
has been reported. Issue takes place for Ceph msgr2 protocol in secure
mode. It can be reproduced by the steps:
sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure
(1) mkdir /mnt/cephfs/fscrypt-test-3
(2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3
(3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3
(4) fscrypt lock /mnt/cephfs/fscrypt-test-3
(5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3
(6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar
(7) Issue has been triggered
[ 408.072247] ------------[ cut here ]------------
[ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865
ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common
intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery
pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass
polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse
serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg
pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore
[ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+
[ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.17.0-5.fc42 04/01/2014
[ 408.072310] Workqueue: ceph-msgr ceph_con_workfn
[ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8
8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06
fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85
[ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246
[ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38
[ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8
[ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8
[ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000
[ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000)
knlGS:0000000000000000
[ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0
[ 408.072336] PKRU: 55555554
[ 408.072337] Call Trace:
[ 408.072338] <TASK>
[ 408.072340] ? sched_clock_noinstr+0x9/0x10
[ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10
[ 408.072347] ? _raw_spin_unlock+0xe/0x40
[ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830
[ 408.072353] ? __kasan_check_write+0x14/0x30
[ 408.072357] ? mutex_lock+0x84/0xe0
[ 408.072359] ? __pfx_mutex_lock+0x10/0x10
[ 408.072361] ceph_con_workfn+0x27e/0x10e0
[ 408.072364] ? metric_delayed_work+0x311/0x2c50
[ 408.072367] process_one_work+0x611/0xe20
[ 408.072371] ? __kasan_check_write+0x14/0x30
[ 408.072373] worker_thread+0x7e3/0x1580
[ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 408.072378] ? __pfx_worker_thread+0x10/0x10
[ 408.072381] kthread+0x381/0x7a0
[ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 408.072385] ? __pfx_kthread+0x10/0x10
[ 408.072387] ? __kasan_check_write+0x14/0x30
[ 408.072389] ? recalc_sigpending+0x160/0x220
[ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50
[ 408.072394] ? calculate_sigpending+0x78/0xb0
[ 408.072395] ? __pfx_kthread+0x10/0x10
[ 408.072397] ret_from_fork+0x2b6/0x380
[ 408.072400] ? __pfx_kthread+0x10/0x10
[ 408.072402] ret_from_fork_asm+0x1a/0x30
[ 408.072406] </TASK>
[ 408.072407] ---[ end trace 0000000000000000 ]---
[ 408.072418] Oops: general protection fault, probably for non-canonical
address 0xdffffc00000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix potential use-after-free in have_mon_and_osd_map()
The wait loop in __ceph_open_session() can race with the client
receiving a new monmap or osdmap shortly after the initial map is
received. Both ceph_monc_handle_map() and handle_one_map() install
a new map immediately after freeing the old one
kfree(monc->monmap);
monc->monmap = monmap;
ceph_osdmap_destroy(osdc->osdmap);
osdc->osdmap = newmap;
under client->monc.mutex and client->osdc.lock respectively, but
because neither is taken in have_mon_and_osd_map() it's possible for
client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in
client->monc.monmap && client->monc.monmap->epoch &&
client->osdc.osdmap && client->osdc.osdmap->epoch;
condition to dereference an already freed map. This happens to be
reproducible with generic/395 and generic/397 with KASAN enabled:
BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70
Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305
CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266
...
Call Trace:
<TASK>
have_mon_and_osd_map+0x56/0x70
ceph_open_session+0x182/0x290
ceph_get_tree+0x333/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
Allocated by task 13305:
ceph_osdmap_alloc+0x16/0x130
ceph_osdc_init+0x27a/0x4c0
ceph_create_client+0x153/0x190
create_fs_client+0x50/0x2a0
ceph_get_tree+0xff/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 9475:
kfree+0x212/0x290
handle_one_map+0x23c/0x3b0
ceph_osdc_handle_map+0x3c9/0x590
mon_dispatch+0x655/0x6f0
ceph_con_process_message+0xc3/0xe0
ceph_con_v1_try_read+0x614/0x760
ceph_con_workfn+0x2de/0x650
process_one_work+0x486/0x7c0
process_scheduled_works+0x73/0x90
worker_thread+0x1c8/0x2a0
kthread+0x2ec/0x300
ret_from_fork+0x24/0x40
ret_from_fork_asm+0x1a/0x30
Rewrite the wait loop to check the above condition directly with
client->monc.mutex and client->osdc.lock taken as appropriate. While
at it, improve the timeout handling (previously mount_timeout could be
exceeded in case wait_event_interruptible_timeout() slept more than
once) and access client->auth_err under client->monc.mutex to match
how it's set in finish_auth().
monmap_show() and osdmap_show() now take the respective lock before
accessing the map as well. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: prevent potential out-of-bounds writes in handle_auth_session_key()
The len field originates from untrusted network packets. Boundary
checks have been added to prevent potential out-of-bounds writes when
decrypting the connection secret or processing service tickets.
[ idryomov: changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: replace BUG_ON with bounds check for map->max_osd
OSD indexes come from untrusted network packets. Boundary checks are
added to validate these against map->max_osd.
[ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic
edits ] |