| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
udf: Fix bogus checksum computation in udf_rename()
Syzbot reports uninitialized memory access in udf_rename() when updating
checksum of '..' directory entry of a moved directory. This is indeed
true as we pass on-stack diriter.fi to the udf_update_tag() and because
that has only struct fileIdentDesc included in it and not the impUse or
name fields, the checksumming function is going to checksum random stack
contents beyond the end of the structure. This is actually harmless
because the following udf_fiiter_write_fi() will recompute the checksum
from on-disk buffers where everything is properly included. So all that
is needed is just removing the bogus calculation. |
| A vulnerability has been identified in CP-8031 MASTER MODULE (All versions < CPCI85 V05.20), CP-8050 MASTER MODULE (All versions < CPCI85 V05.20). The network configuration service of affected devices contains a flaw in the conversion of ipv4 addresses that could lead to an uninitialized variable being used in succeeding validation steps.
By uploading specially crafted network configuration, an authenticated remote attacker could be able to inject commands that are executed on the device with root privileges during device startup. |
| When reading a file, an uninitialized value could have been used as read limit. This vulnerability affects Firefox < 113, Firefox ESR < 102.11, and Thunderbird < 102.11. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Fix wrong offset in bio_truncate()
bio_truncate() clears the buffer outside of last block of bdev, however
current bio_truncate() is using the wrong offset of page. So it can
return the uninitialized data.
This happened when both of truncated/corrupted FS and userspace (via
bdev) are trying to read the last of bdev. |
| The first S0 encryption key is generated with an uninitialized PRNG in Z/IP Gateway products running Silicon Labs Z/IP Gateway SDK v7.18.3 and earlier. This makes the first S0 key generated at startup predictable, potentially allowing network key prediction and unauthorized S0 network access. |
| PDF-XChange Editor PDF File Parsing Uninitialized Variable Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-18493. |
| PDF-XChange Editor J2K File Parsing Uninitialized Variable Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of J2K files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-20907. |
| PDF-XChange Editor J2K File Parsing Uninitialized Variable Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of J2K files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-20909. |
| PDF-XChange Editor U3D File Parsing Uninitialized Variable Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of U3D files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-20929. |
| PDF-XChange Editor U3D File Parsing Uninitialized Variable Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of U3D files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-20935. |
| PDF-XChange Editor J2K File Parsing Uninitialized Variable Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of PDF-XChange Editor. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of J2K files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-21851. |
| Windows CoreMessaging Information Disclosure Vulnerability |
| Dell BIOS contains a use of uninitialized variable vulnerability. A local authenticated malicious user may potentially exploit this vulnerability by using an SMI to gain arbitrary code execution in SMRAM. |
| In the Linux kernel, the following vulnerability has been resolved:
erspan: make sure erspan_base_hdr is present in skb->head
syzbot reported a problem in ip6erspan_rcv() [1]
Issue is that ip6erspan_rcv() (and erspan_rcv()) no longer make
sure erspan_base_hdr is present in skb linear part (skb->head)
before getting @ver field from it.
Add the missing pskb_may_pull() calls.
v2: Reload iph pointer in erspan_rcv() after pskb_may_pull()
because skb->head might have changed.
[1]
BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2756 [inline]
BUG: KMSAN: uninit-value in ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
BUG: KMSAN: uninit-value in gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
pskb_may_pull_reason include/linux/skbuff.h:2742 [inline]
pskb_may_pull include/linux/skbuff.h:2756 [inline]
ip6erspan_rcv net/ipv6/ip6_gre.c:541 [inline]
gre_rcv+0x11f8/0x1930 net/ipv6/ip6_gre.c:610
ip6_protocol_deliver_rcu+0x1d4c/0x2ca0 net/ipv6/ip6_input.c:438
ip6_input_finish net/ipv6/ip6_input.c:483 [inline]
NF_HOOK include/linux/netfilter.h:314 [inline]
ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492
ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586
dst_input include/net/dst.h:460 [inline]
ip6_rcv_finish+0x955/0x970 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:314 [inline]
ipv6_rcv+0xde/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5538 [inline]
__netif_receive_skb+0x1da/0xa00 net/core/dev.c:5652
netif_receive_skb_internal net/core/dev.c:5738 [inline]
netif_receive_skb+0x58/0x660 net/core/dev.c:5798
tun_rx_batched+0x3ee/0x980 drivers/net/tun.c:1549
tun_get_user+0x5566/0x69e0 drivers/net/tun.c:2002
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
tun_alloc_skb drivers/net/tun.c:1525 [inline]
tun_get_user+0x209a/0x69e0 drivers/net/tun.c:1846
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:2108 [inline]
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0xb63/0x1520 fs/read_write.c:590
ksys_write+0x20f/0x4c0 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x93/0xe0 fs/read_write.c:652
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 1 PID: 5045 Comm: syz-executor114 Not tainted 6.9.0-rc1-syzkaller-00021-g962490525cff #0 |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Initialize struct nfsd4_copy earlier
Ensure the refcount and async_copies fields are initialized early.
cleanup_async_copy() will reference these fields if an error occurs
in nfsd4_copy(). If they are not correctly initialized, at the very
least, a refcount underflow occurs. |
| In the Linux kernel, the following vulnerability has been resolved:
geneve: fix header validation in geneve[6]_xmit_skb
syzbot is able to trigger an uninit-value in geneve_xmit() [1]
Problem : While most ip tunnel helpers (like ip_tunnel_get_dsfield())
uses skb_protocol(skb, true), pskb_inet_may_pull() is only using
skb->protocol.
If anything else than ETH_P_IPV6 or ETH_P_IP is found in skb->protocol,
pskb_inet_may_pull() does nothing at all.
If a vlan tag was provided by the caller (af_packet in the syzbot case),
the network header might not point to the correct location, and skb
linear part could be smaller than expected.
Add skb_vlan_inet_prepare() to perform a complete mac validation.
Use this in geneve for the moment, I suspect we need to adopt this
more broadly.
v4 - Jakub reported v3 broke l2_tos_ttl_inherit.sh selftest
- Only call __vlan_get_protocol() for vlan types.
v2,v3 - Addressed Sabrina comments on v1 and v2
[1]
BUG: KMSAN: uninit-value in geneve_xmit_skb drivers/net/geneve.c:910 [inline]
BUG: KMSAN: uninit-value in geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030
geneve_xmit_skb drivers/net/geneve.c:910 [inline]
geneve_xmit+0x302d/0x5420 drivers/net/geneve.c:1030
__netdev_start_xmit include/linux/netdevice.h:4903 [inline]
netdev_start_xmit include/linux/netdevice.h:4917 [inline]
xmit_one net/core/dev.c:3531 [inline]
dev_hard_start_xmit+0x247/0xa20 net/core/dev.c:3547
__dev_queue_xmit+0x348d/0x52c0 net/core/dev.c:4335
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
packet_xmit+0x9c/0x6c0 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3081 [inline]
packet_sendmsg+0x8bb0/0x9ef0 net/packet/af_packet.c:3113
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
__sys_sendto+0x685/0x830 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1d0 net/socket.c:2199
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3804 [inline]
slab_alloc_node mm/slub.c:3845 [inline]
kmem_cache_alloc_node+0x613/0xc50 mm/slub.c:3888
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:577
__alloc_skb+0x35b/0x7a0 net/core/skbuff.c:668
alloc_skb include/linux/skbuff.h:1318 [inline]
alloc_skb_with_frags+0xc8/0xbf0 net/core/skbuff.c:6504
sock_alloc_send_pskb+0xa81/0xbf0 net/core/sock.c:2795
packet_alloc_skb net/packet/af_packet.c:2930 [inline]
packet_snd net/packet/af_packet.c:3024 [inline]
packet_sendmsg+0x722d/0x9ef0 net/packet/af_packet.c:3113
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
__sys_sendto+0x685/0x830 net/socket.c:2191
__do_sys_sendto net/socket.c:2203 [inline]
__se_sys_sendto net/socket.c:2199 [inline]
__x64_sys_sendto+0x125/0x1d0 net/socket.c:2199
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
CPU: 0 PID: 5033 Comm: syz-executor346 Not tainted 6.9.0-rc1-syzkaller-00005-g928a87efa423 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/29/2024 |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: Fix kernel-infoleak-after-free in __skb_datagram_iter
syzbot reported the following uninit-value access issue [1]:
netlink_to_full_skb() creates a new `skb` and puts the `skb->data`
passed as a 1st arg of netlink_to_full_skb() onto new `skb`. The data
size is specified as `len` and passed to skb_put_data(). This `len`
is based on `skb->end` that is not data offset but buffer offset. The
`skb->end` contains data and tailroom. Since the tailroom is not
initialized when the new `skb` created, KMSAN detects uninitialized
memory area when copying the data.
This patch resolved this issue by correct the len from `skb->end` to
`skb->len`, which is the actual data offset.
BUG: KMSAN: kernel-infoleak-after-free in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak-after-free in copy_to_user_iter lib/iov_iter.c:24 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_ubuf include/linux/iov_iter.h:29 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
BUG: KMSAN: kernel-infoleak-after-free in iterate_and_advance include/linux/iov_iter.h:271 [inline]
BUG: KMSAN: kernel-infoleak-after-free in _copy_to_iter+0x364/0x2520 lib/iov_iter.c:186
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copy_to_user_iter lib/iov_iter.c:24 [inline]
iterate_ubuf include/linux/iov_iter.h:29 [inline]
iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
iterate_and_advance include/linux/iov_iter.h:271 [inline]
_copy_to_iter+0x364/0x2520 lib/iov_iter.c:186
copy_to_iter include/linux/uio.h:197 [inline]
simple_copy_to_iter+0x68/0xa0 net/core/datagram.c:532
__skb_datagram_iter+0x123/0xdc0 net/core/datagram.c:420
skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546
skb_copy_datagram_msg include/linux/skbuff.h:3960 [inline]
packet_recvmsg+0xd9c/0x2000 net/packet/af_packet.c:3482
sock_recvmsg_nosec net/socket.c:1044 [inline]
sock_recvmsg net/socket.c:1066 [inline]
sock_read_iter+0x467/0x580 net/socket.c:1136
call_read_iter include/linux/fs.h:2014 [inline]
new_sync_read fs/read_write.c:389 [inline]
vfs_read+0x8f6/0xe00 fs/read_write.c:470
ksys_read+0x20f/0x4c0 fs/read_write.c:613
__do_sys_read fs/read_write.c:623 [inline]
__se_sys_read fs/read_write.c:621 [inline]
__x64_sys_read+0x93/0xd0 fs/read_write.c:621
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was stored to memory at:
skb_put_data include/linux/skbuff.h:2622 [inline]
netlink_to_full_skb net/netlink/af_netlink.c:181 [inline]
__netlink_deliver_tap_skb net/netlink/af_netlink.c:298 [inline]
__netlink_deliver_tap+0x5be/0xc90 net/netlink/af_netlink.c:325
netlink_deliver_tap net/netlink/af_netlink.c:338 [inline]
netlink_deliver_tap_kernel net/netlink/af_netlink.c:347 [inline]
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x10f1/0x1250 net/netlink/af_netlink.c:1368
netlink_sendmsg+0x1238/0x13d0 net/netlink/af_netlink.c:1910
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
____sys_sendmsg+0x9c2/0xd60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x490 net/socket.c:2674
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x44/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Uninit was created at:
free_pages_prepare mm/page_alloc.c:1087 [inline]
free_unref_page_prepare+0xb0/0xa40 mm/page_alloc.c:2347
free_unref_page_list+0xeb/0x1100 mm/page_alloc.c:2533
release_pages+0x23d3/0x2410 mm/swap.c:1042
free_pages_and_swap_cache+0xd9/0xf0 mm/swap_state.c:316
tlb_batch_pages
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
dccp: fix dccp_v4_err()/dccp_v6_err() again
dh->dccph_x is the 9th byte (offset 8) in "struct dccp_hdr",
not in the "byte 7" as Jann claimed.
We need to make sure the ICMP messages are big enough,
using more standard ways (no more assumptions).
syzbot reported:
BUG: KMSAN: uninit-value in pskb_may_pull_reason include/linux/skbuff.h:2667 [inline]
BUG: KMSAN: uninit-value in pskb_may_pull include/linux/skbuff.h:2681 [inline]
BUG: KMSAN: uninit-value in dccp_v6_err+0x426/0x1aa0 net/dccp/ipv6.c:94
pskb_may_pull_reason include/linux/skbuff.h:2667 [inline]
pskb_may_pull include/linux/skbuff.h:2681 [inline]
dccp_v6_err+0x426/0x1aa0 net/dccp/ipv6.c:94
icmpv6_notify+0x4c7/0x880 net/ipv6/icmp.c:867
icmpv6_rcv+0x19d5/0x30d0
ip6_protocol_deliver_rcu+0xda6/0x2a60 net/ipv6/ip6_input.c:438
ip6_input_finish net/ipv6/ip6_input.c:483 [inline]
NF_HOOK include/linux/netfilter.h:304 [inline]
ip6_input+0x15d/0x430 net/ipv6/ip6_input.c:492
ip6_mc_input+0xa7e/0xc80 net/ipv6/ip6_input.c:586
dst_input include/net/dst.h:468 [inline]
ip6_rcv_finish+0x5db/0x870 net/ipv6/ip6_input.c:79
NF_HOOK include/linux/netfilter.h:304 [inline]
ipv6_rcv+0xda/0x390 net/ipv6/ip6_input.c:310
__netif_receive_skb_one_core net/core/dev.c:5523 [inline]
__netif_receive_skb+0x1a6/0x5a0 net/core/dev.c:5637
netif_receive_skb_internal net/core/dev.c:5723 [inline]
netif_receive_skb+0x58/0x660 net/core/dev.c:5782
tun_rx_batched+0x83b/0x920
tun_get_user+0x564c/0x6940 drivers/net/tun.c:2002
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:1985 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x8ef/0x15c0 fs/read_write.c:584
ksys_write+0x20f/0x4c0 fs/read_write.c:637
__do_sys_write fs/read_write.c:649 [inline]
__se_sys_write fs/read_write.c:646 [inline]
__x64_sys_write+0x93/0xd0 fs/read_write.c:646
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook+0x12f/0xb70 mm/slab.h:767
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x577/0xa80 mm/slub.c:3523
kmalloc_reserve+0x13d/0x4a0 net/core/skbuff.c:559
__alloc_skb+0x318/0x740 net/core/skbuff.c:650
alloc_skb include/linux/skbuff.h:1286 [inline]
alloc_skb_with_frags+0xc8/0xbd0 net/core/skbuff.c:6313
sock_alloc_send_pskb+0xa80/0xbf0 net/core/sock.c:2795
tun_alloc_skb drivers/net/tun.c:1531 [inline]
tun_get_user+0x23cf/0x6940 drivers/net/tun.c:1846
tun_chr_write_iter+0x3af/0x5d0 drivers/net/tun.c:2048
call_write_iter include/linux/fs.h:1985 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x8ef/0x15c0 fs/read_write.c:584
ksys_write+0x20f/0x4c0 fs/read_write.c:637
__do_sys_write fs/read_write.c:649 [inline]
__se_sys_write fs/read_write.c:646 [inline]
__x64_sys_write+0x93/0xd0 fs/read_write.c:646
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
CPU: 0 PID: 4995 Comm: syz-executor153 Not tainted 6.6.0-rc1-syzkaller-00014-ga747acc0b752 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023 |
| In the Linux kernel, the following vulnerability has been resolved:
net: zero-initialize tc skb extension on allocation
Function skb_ext_add() doesn't initialize created skb extension with any
value and leaves it up to the user. However, since extension of type
TC_SKB_EXT originally contained only single value tc_skb_ext->chain its
users used to just assign the chain value without setting whole extension
memory to zero first. This assumption changed when TC_SKB_EXT extension was
extended with additional fields but not all users were updated to
initialize the new fields which leads to use of uninitialized memory
afterwards. UBSAN log:
[ 778.299821] UBSAN: invalid-load in net/openvswitch/flow.c:899:28
[ 778.301495] load of value 107 is not a valid value for type '_Bool'
[ 778.303215] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.12.0-rc7+ #2
[ 778.304933] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 778.307901] Call Trace:
[ 778.308680] <IRQ>
[ 778.309358] dump_stack+0xbb/0x107
[ 778.310307] ubsan_epilogue+0x5/0x40
[ 778.311167] __ubsan_handle_load_invalid_value.cold+0x43/0x48
[ 778.312454] ? memset+0x20/0x40
[ 778.313230] ovs_flow_key_extract.cold+0xf/0x14 [openvswitch]
[ 778.314532] ovs_vport_receive+0x19e/0x2e0 [openvswitch]
[ 778.315749] ? ovs_vport_find_upcall_portid+0x330/0x330 [openvswitch]
[ 778.317188] ? create_prof_cpu_mask+0x20/0x20
[ 778.318220] ? arch_stack_walk+0x82/0xf0
[ 778.319153] ? secondary_startup_64_no_verify+0xb0/0xbb
[ 778.320399] ? stack_trace_save+0x91/0xc0
[ 778.321362] ? stack_trace_consume_entry+0x160/0x160
[ 778.322517] ? lock_release+0x52e/0x760
[ 778.323444] netdev_frame_hook+0x323/0x610 [openvswitch]
[ 778.324668] ? ovs_netdev_get_vport+0xe0/0xe0 [openvswitch]
[ 778.325950] __netif_receive_skb_core+0x771/0x2db0
[ 778.327067] ? lock_downgrade+0x6e0/0x6f0
[ 778.328021] ? lock_acquire+0x565/0x720
[ 778.328940] ? generic_xdp_tx+0x4f0/0x4f0
[ 778.329902] ? inet_gro_receive+0x2a7/0x10a0
[ 778.330914] ? lock_downgrade+0x6f0/0x6f0
[ 778.331867] ? udp4_gro_receive+0x4c4/0x13e0
[ 778.332876] ? lock_release+0x52e/0x760
[ 778.333808] ? dev_gro_receive+0xcc8/0x2380
[ 778.334810] ? lock_downgrade+0x6f0/0x6f0
[ 778.335769] __netif_receive_skb_list_core+0x295/0x820
[ 778.336955] ? process_backlog+0x780/0x780
[ 778.337941] ? mlx5e_rep_tc_netdevice_event_unregister+0x20/0x20 [mlx5_core]
[ 778.339613] ? seqcount_lockdep_reader_access.constprop.0+0xa7/0xc0
[ 778.341033] ? kvm_clock_get_cycles+0x14/0x20
[ 778.342072] netif_receive_skb_list_internal+0x5f5/0xcb0
[ 778.343288] ? __kasan_kmalloc+0x7a/0x90
[ 778.344234] ? mlx5e_handle_rx_cqe_mpwrq+0x9e0/0x9e0 [mlx5_core]
[ 778.345676] ? mlx5e_xmit_xdp_frame_mpwqe+0x14d0/0x14d0 [mlx5_core]
[ 778.347140] ? __netif_receive_skb_list_core+0x820/0x820
[ 778.348351] ? mlx5e_post_rx_mpwqes+0xa6/0x25d0 [mlx5_core]
[ 778.349688] ? napi_gro_flush+0x26c/0x3c0
[ 778.350641] napi_complete_done+0x188/0x6b0
[ 778.351627] mlx5e_napi_poll+0x373/0x1b80 [mlx5_core]
[ 778.352853] __napi_poll+0x9f/0x510
[ 778.353704] ? mlx5_flow_namespace_set_mode+0x260/0x260 [mlx5_core]
[ 778.355158] net_rx_action+0x34c/0xa40
[ 778.356060] ? napi_threaded_poll+0x3d0/0x3d0
[ 778.357083] ? sched_clock_cpu+0x18/0x190
[ 778.358041] ? __common_interrupt+0x8e/0x1a0
[ 778.359045] __do_softirq+0x1ce/0x984
[ 778.359938] __irq_exit_rcu+0x137/0x1d0
[ 778.360865] irq_exit_rcu+0xa/0x20
[ 778.361708] common_interrupt+0x80/0xa0
[ 778.362640] </IRQ>
[ 778.363212] asm_common_interrupt+0x1e/0x40
[ 778.364204] RIP: 0010:native_safe_halt+0xe/0x10
[ 778.365273] Code: 4f ff ff ff 4c 89 e7 e8 50 3f 40 fe e9 dc fe ff ff 48 89 df e8 43 3f 40 fe eb 90 cc e9 07 00 00 00 0f 00 2d 74 05 62 00 fb f4 <c3> 90 e9 07 00 00 00 0f 00 2d 64 05 62 00 f4 c3 cc cc 0f 1f 44 00
[ 778.369355] RSP: 0018:ffffffff84407e48 EFLAGS: 00000246
[ 778.370570] RAX
---truncated--- |