| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
atm: atmtcp: Free invalid length skb in atmtcp_c_send().
syzbot reported the splat below. [0]
vcc_sendmsg() copies data passed from userspace to skb and passes
it to vcc->dev->ops->send().
atmtcp_c_send() accesses skb->data as struct atmtcp_hdr after
checking if skb->len is 0, but it's not enough.
Also, when skb->len == 0, skb and sk (vcc) were leaked because
dev_kfree_skb() is not called and sk_wmem_alloc adjustment is missing
to revert atm_account_tx() in vcc_sendmsg(), which is expected
to be done in atm_pop_raw().
Let's properly free skb with an invalid length in atmtcp_c_send().
[0]:
BUG: KMSAN: uninit-value in atmtcp_c_send+0x255/0xed0 drivers/atm/atmtcp.c:294
atmtcp_c_send+0x255/0xed0 drivers/atm/atmtcp.c:294
vcc_sendmsg+0xd7c/0xff0 net/atm/common.c:644
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:727
____sys_sendmsg+0x7e0/0xd80 net/socket.c:2566
___sys_sendmsg+0x271/0x3b0 net/socket.c:2620
__sys_sendmsg net/socket.c:2652 [inline]
__do_sys_sendmsg net/socket.c:2657 [inline]
__se_sys_sendmsg net/socket.c:2655 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2655
x64_sys_call+0x32fb/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:4154 [inline]
slab_alloc_node mm/slub.c:4197 [inline]
kmem_cache_alloc_node_noprof+0x818/0xf00 mm/slub.c:4249
kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:579
__alloc_skb+0x347/0x7d0 net/core/skbuff.c:670
alloc_skb include/linux/skbuff.h:1336 [inline]
vcc_sendmsg+0xb40/0xff0 net/atm/common.c:628
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg+0x330/0x3d0 net/socket.c:727
____sys_sendmsg+0x7e0/0xd80 net/socket.c:2566
___sys_sendmsg+0x271/0x3b0 net/socket.c:2620
__sys_sendmsg net/socket.c:2652 [inline]
__do_sys_sendmsg net/socket.c:2657 [inline]
__se_sys_sendmsg net/socket.c:2655 [inline]
__x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2655
x64_sys_call+0x32fb/0x3db0 arch/x86/include/generated/asm/syscalls_64.h:47
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd9/0x210 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
CPU: 1 UID: 0 PID: 5798 Comm: syz-executor192 Not tainted 6.16.0-rc1-syzkaller-00010-g2c4a1f3fe03e #0 PREEMPT(undef)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025 |
| A flaw was found in the GNU C Library. A recent fix for CVE-2023-4806 introduced the potential for a memory leak, which may result in an application crash. |
| A flaw was found in GLib. GVariant deserialization fails to validate that the input conforms to the expected format, leading to denial of service. |
| When `UpdateRegExpStatics` attempted to access `initialStringHeap` it could already have been garbage collected prior to entering the function, which could potentially have led to an exploitable crash. This vulnerability affects Firefox < 117, Firefox ESR < 115.2, and Thunderbird < 115.2. |
| On affected platforms running Arista EOS with OSPFv3 configured, a specially crafted packet can cause the OSFPv3 process to have high CPU utilization which may result in the OSFPv3 process being restarted. This may cause disruption in the OSFPv3 routes on the switch.
This issue was discovered internally by Arista and is not aware of any malicious uses of this issue in customer networks. |
| A flaw has been found in OFFIS DCMTK up to 3.6.9. The impacted element is the function DcmQueryRetrieveIndexDatabaseHandle::startFindRequest/DcmQueryRetrieveIndexDatabaseHandle::startMoveRequest in the library dcmqrdb/libsrc/dcmqrdbi.cc of the component dcmqrscp. This manipulation causes null pointer dereference. The attack requires local access. Upgrading to version 3.7.0 is sufficient to resolve this issue. Patch name: ffb1a4a37d2c876e3feeb31df4930f2aed7fa030. You should upgrade the affected component. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: pcm: oss: Limit the period size to 16MB
Set the practical limit to the period size (the fragment shift in OSS)
instead of a full 31bit; a too large value could lead to the exhaust
of memory as we allocate temporary buffers of the period size, too.
As of this patch, we set to 16MB limit, which should cover all use
cases. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: free exchange changeset on failures
Fstests runs on my VMs have show several kmemleak reports like the following.
unreferenced object 0xffff88811ae59080 (size 64):
comm "xfs_io", pid 12124, jiffies 4294987392 (age 6.368s)
hex dump (first 32 bytes):
00 c0 1c 00 00 00 00 00 ff cf 1c 00 00 00 00 00 ................
90 97 e5 1a 81 88 ff ff 90 97 e5 1a 81 88 ff ff ................
backtrace:
[<00000000ac0176d2>] ulist_add_merge+0x60/0x150 [btrfs]
[<0000000076e9f312>] set_state_bits+0x86/0xc0 [btrfs]
[<0000000014fe73d6>] set_extent_bit+0x270/0x690 [btrfs]
[<000000004f675208>] set_record_extent_bits+0x19/0x20 [btrfs]
[<00000000b96137b1>] qgroup_reserve_data+0x274/0x310 [btrfs]
[<0000000057e9dcbb>] btrfs_check_data_free_space+0x5c/0xa0 [btrfs]
[<0000000019c4511d>] btrfs_delalloc_reserve_space+0x1b/0xa0 [btrfs]
[<000000006d37e007>] btrfs_dio_iomap_begin+0x415/0x970 [btrfs]
[<00000000fb8a74b8>] iomap_iter+0x161/0x1e0
[<0000000071dff6ff>] __iomap_dio_rw+0x1df/0x700
[<000000002567ba53>] iomap_dio_rw+0x5/0x20
[<0000000072e555f8>] btrfs_file_write_iter+0x290/0x530 [btrfs]
[<000000005eb3d845>] new_sync_write+0x106/0x180
[<000000003fb505bf>] vfs_write+0x24d/0x2f0
[<000000009bb57d37>] __x64_sys_pwrite64+0x69/0xa0
[<000000003eba3fdf>] do_syscall_64+0x43/0x90
In case brtfs_qgroup_reserve_data() or btrfs_delalloc_reserve_metadata()
fail the allocated extent_changeset will not be freed.
So in btrfs_check_data_free_space() and btrfs_delalloc_reserve_space()
free the allocated extent_changeset to get rid of the allocated memory.
The issue currently only happens in the direct IO write path, but only
after 65b3c08606e5 ("btrfs: fix ENOSPC failure when attempting direct IO
write into NOCOW range"), and also at defrag_one_locked_target(). Every
other place is always calling extent_changeset_free() even if its call
to btrfs_delalloc_reserve_space() or btrfs_check_data_free_space() has
failed. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: fix memleak in ttm_transfered_destroy
We need to cleanup the fences for ghost objects as well.
Bug: https://bugzilla.kernel.org/show_bug.cgi?id=214029
Bug: https://bugzilla.kernel.org/show_bug.cgi?id=214447 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: usbhid: free raw_report buffers in usbhid_stop
Free the unsent raw_report buffers when the device is removed.
Fixes a memory leak reported by syzbot at:
https://syzkaller.appspot.com/bug?id=7b4fa7cb1a7c2d3342a2a8a6c53371c8c418ab47 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Fix rdma_resolve_route() memory leak
Fix a memory leak when "mda_resolve_route() is called more than once on
the same "rdma_cm_id".
This is possible if cma_query_handler() triggers the
RDMA_CM_EVENT_ROUTE_ERROR flow which puts the state machine back and
allows rdma_resolve_route() to be called again. |
| In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-core: explicitly clear ioctl input data
As seen from a recent syzbot bug report, mistakes in the compat ioctl
implementation can lead to uninitialized kernel stack data getting used
as input for driver ioctl handlers.
The reported bug is now fixed, but it's possible that other related
bugs are still present or get added in the future. As the drivers need
to check user input already, the possible impact is fairly low, but it
might still cause an information leak.
To be on the safe side, always clear the entire ioctl buffer before
calling the conversion handler functions that are meant to initialize
them. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: 8250: serial_cs: Fix a memory leak in error handling path
In the probe function, if the final 'serial_config()' fails, 'info' is
leaking.
Add a resource handling path to free this memory. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: megaraid_sas: Fix resource leak in case of probe failure
The driver doesn't clean up all the allocated resources properly when
scsi_add_host(), megasas_start_aen() function fails during the PCI device
probe.
Clean up all those resources. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu: Fix arm_smmu_device refcount leak in address translation
The reference counting issue happens in several exception handling paths
of arm_smmu_iova_to_phys_hard(). When those error scenarios occur, the
function forgets to decrease the refcount of "smmu" increased by
arm_smmu_rpm_get(), causing a refcount leak.
Fix this issue by jumping to "out" label when those error scenarios
occur. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-blk: Fix memory leak among suspend/resume procedure
The vblk->vqs should be freed before we call init_vqs()
in virtblk_restore(). |
| In the Linux kernel, the following vulnerability has been resolved:
isdn: mISDN: netjet: Fix crash in nj_probe:
'nj_setup' in netjet.c might fail with -EIO and in this case
'card->irq' is initialized and is bigger than zero. A subsequent call to
'nj_release' will free the irq that has not been requested.
Fix this bug by deleting the previous assignment to 'card->irq' and just
keep the assignment before 'request_irq'.
The KASAN's log reveals it:
[ 3.354615 ] WARNING: CPU: 0 PID: 1 at kernel/irq/manage.c:1826
free_irq+0x100/0x480
[ 3.355112 ] Modules linked in:
[ 3.355310 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted
5.13.0-rc1-00144-g25a1298726e #13
[ 3.355816 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 3.356552 ] RIP: 0010:free_irq+0x100/0x480
[ 3.356820 ] Code: 6e 08 74 6f 4d 89 f4 e8 5e ac 09 00 4d 8b 74 24 18
4d 85 f6 75 e3 e8 4f ac 09 00 8b 75 c8 48 c7 c7 78 c1 2e 85 e8 e0 cf f5
ff <0f> 0b 48 8b 75 c0 4c 89 ff e8 72 33 0b 03 48 8b 43 40 4c 8b a0 80
[ 3.358012 ] RSP: 0000:ffffc90000017b48 EFLAGS: 00010082
[ 3.358357 ] RAX: 0000000000000000 RBX: ffff888104dc8000 RCX:
0000000000000000
[ 3.358814 ] RDX: ffff8881003c8000 RSI: ffffffff8124a9e6 RDI:
00000000ffffffff
[ 3.359272 ] RBP: ffffc90000017b88 R08: 0000000000000000 R09:
0000000000000000
[ 3.359732 ] R10: ffffc900000179f0 R11: 0000000000001d04 R12:
0000000000000000
[ 3.360195 ] R13: ffff888107dc6000 R14: ffff888107dc6928 R15:
ffff888104dc80a8
[ 3.360652 ] FS: 0000000000000000(0000) GS:ffff88817bc00000(0000)
knlGS:0000000000000000
[ 3.361170 ] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 3.361538 ] CR2: 0000000000000000 CR3: 000000000582e000 CR4:
00000000000006f0
[ 3.362003 ] DR0: 0000000000000000 DR1: 0000000000000000 DR2:
0000000000000000
[ 3.362175 ] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400
[ 3.362175 ] Call Trace:
[ 3.362175 ] nj_release+0x51/0x1e0
[ 3.362175 ] nj_probe+0x450/0x950
[ 3.362175 ] ? pci_device_remove+0x110/0x110
[ 3.362175 ] local_pci_probe+0x45/0xa0
[ 3.362175 ] pci_device_probe+0x12b/0x1d0
[ 3.362175 ] really_probe+0x2a9/0x610
[ 3.362175 ] driver_probe_device+0x90/0x1d0
[ 3.362175 ] ? mutex_lock_nested+0x1b/0x20
[ 3.362175 ] device_driver_attach+0x68/0x70
[ 3.362175 ] __driver_attach+0x124/0x1b0
[ 3.362175 ] ? device_driver_attach+0x70/0x70
[ 3.362175 ] bus_for_each_dev+0xbb/0x110
[ 3.362175 ] ? rdinit_setup+0x45/0x45
[ 3.362175 ] driver_attach+0x27/0x30
[ 3.362175 ] bus_add_driver+0x1eb/0x2a0
[ 3.362175 ] driver_register+0xa9/0x180
[ 3.362175 ] __pci_register_driver+0x82/0x90
[ 3.362175 ] ? w6692_init+0x38/0x38
[ 3.362175 ] nj_init+0x36/0x38
[ 3.362175 ] do_one_initcall+0x7f/0x3d0
[ 3.362175 ] ? rdinit_setup+0x45/0x45
[ 3.362175 ] ? rcu_read_lock_sched_held+0x4f/0x80
[ 3.362175 ] kernel_init_freeable+0x2aa/0x301
[ 3.362175 ] ? rest_init+0x2c0/0x2c0
[ 3.362175 ] kernel_init+0x18/0x190
[ 3.362175 ] ? rest_init+0x2c0/0x2c0
[ 3.362175 ] ? rest_init+0x2c0/0x2c0
[ 3.362175 ] ret_from_fork+0x1f/0x30
[ 3.362175 ] Kernel panic - not syncing: panic_on_warn set ...
[ 3.362175 ] CPU: 0 PID: 1 Comm: swapper/0 Not tainted
5.13.0-rc1-00144-g25a1298726e #13
[ 3.362175 ] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS
rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 3.362175 ] Call Trace:
[ 3.362175 ] dump_stack+0xba/0xf5
[ 3.362175 ] ? free_irq+0x100/0x480
[ 3.362175 ] panic+0x15a/0x3f2
[ 3.362175 ] ? __warn+0xf2/0x150
[ 3.362175 ] ? free_irq+0x100/0x480
[ 3.362175 ] __warn+0x108/0x150
[ 3.362175 ] ? free_irq+0x100/0x480
[ 3.362175 ] report_bug+0x119/0x1c0
[ 3.362175 ] handle_bug+0x3b/0x80
[ 3.362175 ] exc_invalid_op+0x18/0x70
[ 3.362175 ] asm_exc_invalid_op+0x12/0x20
[ 3.362175 ] RIP: 0010:free_irq+0x100
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net:sfc: fix non-freed irq in legacy irq mode
SFC driver can be configured via modparam to work using MSI-X, MSI or
legacy IRQ interrupts. In the last one, the interrupt was not properly
released on module remove.
It was not freed because the flag irqs_hooked was not set during
initialization in the case of using legacy IRQ.
Example of (trimmed) trace during module remove without this fix:
remove_proc_entry: removing non-empty directory 'irq/125', leaking at least '0000:3b:00.1'
WARNING: CPU: 39 PID: 3658 at fs/proc/generic.c:715 remove_proc_entry+0x15c/0x170
...trimmed...
Call Trace:
unregister_irq_proc+0xe3/0x100
free_desc+0x29/0x70
irq_free_descs+0x47/0x70
mp_unmap_irq+0x58/0x60
acpi_unregister_gsi_ioapic+0x2a/0x40
acpi_pci_irq_disable+0x78/0xb0
pci_disable_device+0xd1/0x100
efx_pci_remove+0xa1/0x1e0 [sfc]
pci_device_remove+0x38/0xa0
__device_release_driver+0x177/0x230
driver_detach+0xcb/0x110
bus_remove_driver+0x58/0xd0
pci_unregister_driver+0x2a/0xb0
efx_exit_module+0x24/0xf40 [sfc]
__do_sys_delete_module.constprop.0+0x171/0x280
? exit_to_user_mode_prepare+0x83/0x1d0
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f9f9385800b
...trimmed... |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Fix error handling of scsi_host_alloc()
After device is initialized via device_initialize(), or its name is set via
dev_set_name(), the device has to be freed via put_device(). Otherwise
device name will be leaked because it is allocated dynamically in
dev_set_name().
Fix the leak by replacing kfree() with put_device(). Since
scsi_host_dev_release() properly handles IDA and kthread removal, remove
special-casing these from the error handling as well. |
| In the Linux kernel, the following vulnerability has been resolved:
phy: phy-mtk-tphy: Fix some resource leaks in mtk_phy_init()
Use clk_disable_unprepare() in the error path of mtk_phy_init() to fix
some resource leaks. |