| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4/pNFS: Fix a race to wake on NFS_LAYOUT_DRAIN
We found a few different systems hung up in writeback waiting on the same
page lock, and one task waiting on the NFS_LAYOUT_DRAIN bit in
pnfs_update_layout(), however the pnfs_layout_hdr's plh_outstanding count
was zero.
It seems most likely that this is another race between the waiter and waker
similar to commit ed0172af5d6f ("SUNRPC: Fix a race to wake a sync task").
Fix it up by applying the advised barrier. |
| In the Linux kernel, the following vulnerability has been resolved:
of: dynamic: Synchronize of_changeset_destroy() with the devlink removals
In the following sequence:
1) of_platform_depopulate()
2) of_overlay_remove()
During the step 1, devices are destroyed and devlinks are removed.
During the step 2, OF nodes are destroyed but
__of_changeset_entry_destroy() can raise warnings related to missing
of_node_put():
ERROR: memory leak, expected refcount 1 instead of 2 ...
Indeed, during the devlink removals performed at step 1, the removal
itself releasing the device (and the attached of_node) is done by a job
queued in a workqueue and so, it is done asynchronously with respect to
function calls.
When the warning is present, of_node_put() will be called but wrongly
too late from the workqueue job.
In order to be sure that any ongoing devlink removals are done before
the of_node destruction, synchronize the of_changeset_destroy() with the
devlink removals. |
| In the Linux kernel, the following vulnerability has been resolved:
udp: do not accept non-tunnel GSO skbs landing in a tunnel
When rx-udp-gro-forwarding is enabled UDP packets might be GROed when
being forwarded. If such packets might land in a tunnel this can cause
various issues and udp_gro_receive makes sure this isn't the case by
looking for a matching socket. This is performed in
udp4/6_gro_lookup_skb but only in the current netns. This is an issue
with tunneled packets when the endpoint is in another netns. In such
cases the packets will be GROed at the UDP level, which leads to various
issues later on. The same thing can happen with rx-gro-list.
We saw this with geneve packets being GROed at the UDP level. In such
case gso_size is set; later the packet goes through the geneve rx path,
the geneve header is pulled, the offset are adjusted and frag_list skbs
are not adjusted with regard to geneve. When those skbs hit
skb_fragment, it will misbehave. Different outcomes are possible
depending on what the GROed skbs look like; from corrupted packets to
kernel crashes.
One example is a BUG_ON[1] triggered in skb_segment while processing the
frag_list. Because gso_size is wrong (geneve header was pulled)
skb_segment thinks there is "geneve header size" of data in frag_list,
although it's in fact the next packet. The BUG_ON itself has nothing to
do with the issue. This is only one of the potential issues.
Looking up for a matching socket in udp_gro_receive is fragile: the
lookup could be extended to all netns (not speaking about performances)
but nothing prevents those packets from being modified in between and we
could still not find a matching socket. It's OK to keep the current
logic there as it should cover most cases but we also need to make sure
we handle tunnel packets being GROed too early.
This is done by extending the checks in udp_unexpected_gso: GSO packets
lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits and landing in a tunnel must
be segmented.
[1] kernel BUG at net/core/skbuff.c:4408!
RIP: 0010:skb_segment+0xd2a/0xf70
__udp_gso_segment+0xaa/0x560 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix infinite recursion in fib6_dump_done().
syzkaller reported infinite recursive calls of fib6_dump_done() during
netlink socket destruction. [1]
From the log, syzkaller sent an AF_UNSPEC RTM_GETROUTE message, and then
the response was generated. The following recvmmsg() resumed the dump
for IPv6, but the first call of inet6_dump_fib() failed at kzalloc() due
to the fault injection. [0]
12:01:34 executing program 3:
r0 = socket$nl_route(0x10, 0x3, 0x0)
sendmsg$nl_route(r0, ... snip ...)
recvmmsg(r0, ... snip ...) (fail_nth: 8)
Here, fib6_dump_done() was set to nlk_sk(sk)->cb.done, and the next call
of inet6_dump_fib() set it to nlk_sk(sk)->cb.args[3]. syzkaller stopped
receiving the response halfway through, and finally netlink_sock_destruct()
called nlk_sk(sk)->cb.done().
fib6_dump_done() calls fib6_dump_end() and nlk_sk(sk)->cb.done() if it
is still not NULL. fib6_dump_end() rewrites nlk_sk(sk)->cb.done() by
nlk_sk(sk)->cb.args[3], but it has the same function, not NULL, calling
itself recursively and hitting the stack guard page.
To avoid the issue, let's set the destructor after kzalloc().
[0]:
FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 0
CPU: 1 PID: 432110 Comm: syz-executor.3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117)
should_fail_ex (lib/fault-inject.c:52 lib/fault-inject.c:153)
should_failslab (mm/slub.c:3733)
kmalloc_trace (mm/slub.c:3748 mm/slub.c:3827 mm/slub.c:3992)
inet6_dump_fib (./include/linux/slab.h:628 ./include/linux/slab.h:749 net/ipv6/ip6_fib.c:662)
rtnl_dump_all (net/core/rtnetlink.c:4029)
netlink_dump (net/netlink/af_netlink.c:2269)
netlink_recvmsg (net/netlink/af_netlink.c:1988)
____sys_recvmsg (net/socket.c:1046 net/socket.c:2801)
___sys_recvmsg (net/socket.c:2846)
do_recvmmsg (net/socket.c:2943)
__x64_sys_recvmmsg (net/socket.c:3041 net/socket.c:3034 net/socket.c:3034)
[1]:
BUG: TASK stack guard page was hit at 00000000f2fa9af1 (stack is 00000000b7912430..000000009a436beb)
stack guard page: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 223719 Comm: kworker/1:3 Not tainted 6.8.0-12821-g537c2e91d354-dirty #11
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Workqueue: events netlink_sock_destruct_work
RIP: 0010:fib6_dump_done (net/ipv6/ip6_fib.c:570)
Code: 3c 24 e8 f3 e9 51 fd e9 28 fd ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 41 57 41 56 41 55 41 54 55 48 89 fd <53> 48 8d 5d 60 e8 b6 4d 07 fd 48 89 da 48 b8 00 00 00 00 00 fc ff
RSP: 0018:ffffc9000d980000 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffffffff84405990 RCX: ffffffff844059d3
RDX: ffff8881028e0000 RSI: ffffffff84405ac2 RDI: ffff88810c02f358
RBP: ffff88810c02f358 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000224 R12: 0000000000000000
R13: ffff888007c82c78 R14: ffff888007c82c68 R15: ffff888007c82c68
FS: 0000000000000000(0000) GS:ffff88811b100000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc9000d97fff8 CR3: 0000000102309002 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<#DF>
</#DF>
<TASK>
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
...
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
fib6_dump_done (net/ipv6/ip6_fib.c:572 (discriminator 1))
netlink_sock_destruct (net/netlink/af_netlink.c:401)
__sk_destruct (net/core/sock.c:2177 (discriminator 2))
sk_destruct (net/core/sock.c:2224)
__sk_free (net/core/sock.c:2235)
sk_free (net/core/sock.c:2246)
process_one_work (kernel/workqueue.c:3259)
worker_thread (kernel/workqueue.c:3329 kernel/workqueue.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: altmodes/displayport: do not index invalid pin_assignments
A poorly implemented DisplayPort Alt Mode port partner can indicate
that its pin assignment capabilities are greater than the maximum
value, DP_PIN_ASSIGN_F. In this case, calls to pin_assignment_show
will cause a BRK exception due to an out of bounds array access.
Prevent for loop in pin_assignment_show from accessing
invalid values in pin_assignments by adding DP_PIN_ASSIGN_MAX
value in typec_dp.h and using i < DP_PIN_ASSIGN_MAX as a loop
condition. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_skbmod: prevent kernel-infoleak
syzbot found that tcf_skbmod_dump() was copying four bytes
from kernel stack to user space [1].
The issue here is that 'struct tc_skbmod' has a four bytes hole.
We need to clear the structure before filling fields.
[1]
BUG: KMSAN: kernel-infoleak in instrument_copy_to_user include/linux/instrumented.h:114 [inline]
BUG: KMSAN: kernel-infoleak in copy_to_user_iter lib/iov_iter.c:24 [inline]
BUG: KMSAN: kernel-infoleak in iterate_ubuf include/linux/iov_iter.h:29 [inline]
BUG: KMSAN: kernel-infoleak in iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
BUG: KMSAN: kernel-infoleak in iterate_and_advance include/linux/iov_iter.h:271 [inline]
BUG: KMSAN: kernel-infoleak in _copy_to_iter+0x366/0x2520 lib/iov_iter.c:185
instrument_copy_to_user include/linux/instrumented.h:114 [inline]
copy_to_user_iter lib/iov_iter.c:24 [inline]
iterate_ubuf include/linux/iov_iter.h:29 [inline]
iterate_and_advance2 include/linux/iov_iter.h:245 [inline]
iterate_and_advance include/linux/iov_iter.h:271 [inline]
_copy_to_iter+0x366/0x2520 lib/iov_iter.c:185
copy_to_iter include/linux/uio.h:196 [inline]
simple_copy_to_iter net/core/datagram.c:532 [inline]
__skb_datagram_iter+0x185/0x1000 net/core/datagram.c:420
skb_copy_datagram_iter+0x5c/0x200 net/core/datagram.c:546
skb_copy_datagram_msg include/linux/skbuff.h:4050 [inline]
netlink_recvmsg+0x432/0x1610 net/netlink/af_netlink.c:1962
sock_recvmsg_nosec net/socket.c:1046 [inline]
sock_recvmsg+0x2c4/0x340 net/socket.c:1068
__sys_recvfrom+0x35a/0x5f0 net/socket.c:2242
__do_sys_recvfrom net/socket.c:2260 [inline]
__se_sys_recvfrom net/socket.c:2256 [inline]
__x64_sys_recvfrom+0x126/0x1d0 net/socket.c:2256
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was stored to memory at:
pskb_expand_head+0x30f/0x19d0 net/core/skbuff.c:2253
netlink_trim+0x2c2/0x330 net/netlink/af_netlink.c:1317
netlink_unicast+0x9f/0x1260 net/netlink/af_netlink.c:1351
nlmsg_unicast include/net/netlink.h:1144 [inline]
nlmsg_notify+0x21d/0x2f0 net/netlink/af_netlink.c:2610
rtnetlink_send+0x73/0x90 net/core/rtnetlink.c:741
rtnetlink_maybe_send include/linux/rtnetlink.h:17 [inline]
tcf_add_notify net/sched/act_api.c:2048 [inline]
tcf_action_add net/sched/act_api.c:2071 [inline]
tc_ctl_action+0x146e/0x19d0 net/sched/act_api.c:2119
rtnetlink_rcv_msg+0x1737/0x1900 net/core/rtnetlink.c:6595
netlink_rcv_skb+0x375/0x650 net/netlink/af_netlink.c:2559
rtnetlink_rcv+0x34/0x40 net/core/rtnetlink.c:6613
netlink_unicast_kernel net/netlink/af_netlink.c:1335 [inline]
netlink_unicast+0xf4c/0x1260 net/netlink/af_netlink.c:1361
netlink_sendmsg+0x10df/0x11f0 net/netlink/af_netlink.c:1905
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x30f/0x380 net/socket.c:745
____sys_sendmsg+0x877/0xb60 net/socket.c:2584
___sys_sendmsg+0x28d/0x3c0 net/socket.c:2638
__sys_sendmsg net/socket.c:2667 [inline]
__do_sys_sendmsg net/socket.c:2676 [inline]
__se_sys_sendmsg net/socket.c:2674 [inline]
__x64_sys_sendmsg+0x307/0x4a0 net/socket.c:2674
do_syscall_64+0xd5/0x1f0
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Uninit was stored to memory at:
__nla_put lib/nlattr.c:1041 [inline]
nla_put+0x1c6/0x230 lib/nlattr.c:1099
tcf_skbmod_dump+0x23f/0xc20 net/sched/act_skbmod.c:256
tcf_action_dump_old net/sched/act_api.c:1191 [inline]
tcf_action_dump_1+0x85e/0x970 net/sched/act_api.c:1227
tcf_action_dump+0x1fd/0x460 net/sched/act_api.c:1251
tca_get_fill+0x519/0x7a0 net/sched/act_api.c:1628
tcf_add_notify_msg net/sched/act_api.c:2023 [inline]
tcf_add_notify net/sched/act_api.c:2042 [inline]
tcf_action_add net/sched/act_api.c:2071 [inline]
tc_ctl_action+0x1365/0x19d0 net/sched/act_api.c:2119
rtnetlink_rcv_msg+0x1737/0x1900 net/core/rtnetlink.c:6595
netlink_rcv_skb+0x375/0x650 net/netlink/af_netli
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nfs: Clean up /proc/net/rpc/nfs when nfs_fs_proc_net_init() fails.
syzbot reported a warning below [1] following a fault injection in
nfs_fs_proc_net_init(). [0]
When nfs_fs_proc_net_init() fails, /proc/net/rpc/nfs is not removed.
Later, rpc_proc_exit() tries to remove /proc/net/rpc, and the warning
is logged as the directory is not empty.
Let's handle the error of nfs_fs_proc_net_init() properly.
[0]:
FAULT_INJECTION: forcing a failure.
name failslab, interval 1, probability 0, space 0, times 0
CPU: 1 UID: 0 PID: 6120 Comm: syz.2.27 Not tainted 6.16.0-rc1-syzkaller-00010-g2c4a1f3fe03e #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:123)
should_fail_ex (lib/fault-inject.c:73 lib/fault-inject.c:174)
should_failslab (mm/failslab.c:46)
kmem_cache_alloc_noprof (mm/slub.c:4178 mm/slub.c:4204)
__proc_create (fs/proc/generic.c:427)
proc_create_reg (fs/proc/generic.c:554)
proc_create_net_data (fs/proc/proc_net.c:120)
nfs_fs_proc_net_init (fs/nfs/client.c:1409)
nfs_net_init (fs/nfs/inode.c:2600)
ops_init (net/core/net_namespace.c:138)
setup_net (net/core/net_namespace.c:443)
copy_net_ns (net/core/net_namespace.c:576)
create_new_namespaces (kernel/nsproxy.c:110)
unshare_nsproxy_namespaces (kernel/nsproxy.c:218 (discriminator 4))
ksys_unshare (kernel/fork.c:3123)
__x64_sys_unshare (kernel/fork.c:3190)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 arch/x86/entry/syscall_64.c:94)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
</TASK>
[1]:
remove_proc_entry: removing non-empty directory 'net/rpc', leaking at least 'nfs'
WARNING: CPU: 1 PID: 6120 at fs/proc/generic.c:727 remove_proc_entry+0x45e/0x530 fs/proc/generic.c:727
Modules linked in:
CPU: 1 UID: 0 PID: 6120 Comm: syz.2.27 Not tainted 6.16.0-rc1-syzkaller-00010-g2c4a1f3fe03e #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
RIP: 0010:remove_proc_entry+0x45e/0x530 fs/proc/generic.c:727
Code: 3c 02 00 0f 85 85 00 00 00 48 8b 93 d8 00 00 00 4d 89 f0 4c 89 e9 48 c7 c6 40 ba a2 8b 48 c7 c7 60 b9 a2 8b e8 33 81 1d ff 90 <0f> 0b 90 90 e9 5f fe ff ff e8 04 69 5e ff 90 48 b8 00 00 00 00 00
RSP: 0018:ffffc90003637b08 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff88805f534140 RCX: ffffffff817a92c8
RDX: ffff88807da99e00 RSI: ffffffff817a92d5 RDI: 0000000000000001
RBP: ffff888033431ac0 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffff888033431a00
R13: ffff888033431ae4 R14: ffff888033184724 R15: dffffc0000000000
FS: 0000555580328500(0000) GS:ffff888124a62000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f71733743e0 CR3: 000000007f618000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
sunrpc_exit_net+0x46/0x90 net/sunrpc/sunrpc_syms.c:76
ops_exit_list net/core/net_namespace.c:200 [inline]
ops_undo_list+0x2eb/0xab0 net/core/net_namespace.c:253
setup_net+0x2e1/0x510 net/core/net_namespace.c:457
copy_net_ns+0x2a6/0x5f0 net/core/net_namespace.c:574
create_new_namespaces+0x3ea/0xa90 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0xc0/0x1f0 kernel/nsproxy.c:218
ksys_unshare+0x45b/0xa40 kernel/fork.c:3121
__do_sys_unshare kernel/fork.c:3192 [inline]
__se_sys_unshare kernel/fork.c:3190 [inline]
__x64_sys_unshare+0x31/0x40 kernel/fork.c:3190
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x490 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa1a6b8e929
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: SCO: Fix not validating setsockopt user input
syzbot reported sco_sock_setsockopt() is copying data without
checking user input length.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset
include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr
include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in sco_sock_setsockopt+0xc0b/0xf90
net/bluetooth/sco.c:893
Read of size 4 at addr ffff88805f7b15a3 by task syz-executor.5/12578 |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: fix vf may be used uninitialized in this function warning
To fix the regression introduced by commit 52424f974bc5, which causes
servers hang in very hard to reproduce conditions with resets races.
Using two sources for the information is the root cause.
In this function before the fix bumping v didn't mean bumping vf
pointer. But the code used this variables interchangeably, so stale vf
could point to different/not intended vf.
Remove redundant "v" variable and iterate via single VF pointer across
whole function instead to guarantee VF pointer validity. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: vgic-v2: Check for non-NULL vCPU in vgic_v2_parse_attr()
vgic_v2_parse_attr() is responsible for finding the vCPU that matches
the user-provided CPUID, which (of course) may not be valid. If the ID
is invalid, kvm_get_vcpu_by_id() returns NULL, which isn't handled
gracefully.
Similar to the GICv3 uaccess flow, check that kvm_get_vcpu_by_id()
actually returns something and fail the ioctl if not. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: avoid off-by-one read from userspace
We try to access count + 1 byte from userspace with memdup_user(buffer,
count + 1). However, the userspace only provides buffer of count bytes and
only these count bytes are verified to be okay to access. To ensure the
copied buffer is NUL terminated, we use memdup_user_nul instead. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: release mutex after nft_gc_seq_end from abort path
The commit mutex should not be released during the critical section
between nft_gc_seq_begin() and nft_gc_seq_end(), otherwise, async GC
worker could collect expired objects and get the released commit lock
within the same GC sequence.
nf_tables_module_autoload() temporarily releases the mutex to load
module dependencies, then it goes back to replay the transaction again.
Move it at the end of the abort phase after nft_gc_seq_end() is called. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix garbage collector racing against connect()
Garbage collector does not take into account the risk of embryo getting
enqueued during the garbage collection. If such embryo has a peer that
carries SCM_RIGHTS, two consecutive passes of scan_children() may see a
different set of children. Leading to an incorrectly elevated inflight
count, and then a dangling pointer within the gc_inflight_list.
sockets are AF_UNIX/SOCK_STREAM
S is an unconnected socket
L is a listening in-flight socket bound to addr, not in fdtable
V's fd will be passed via sendmsg(), gets inflight count bumped
connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc()
---------------- ------------------------- -----------
NS = unix_create1()
skb1 = sock_wmalloc(NS)
L = unix_find_other(addr)
unix_state_lock(L)
unix_peer(S) = NS
// V count=1 inflight=0
NS = unix_peer(S)
skb2 = sock_alloc()
skb_queue_tail(NS, skb2[V])
// V became in-flight
// V count=2 inflight=1
close(V)
// V count=1 inflight=1
// GC candidate condition met
for u in gc_inflight_list:
if (total_refs == inflight_refs)
add u to gc_candidates
// gc_candidates={L, V}
for u in gc_candidates:
scan_children(u, dec_inflight)
// embryo (skb1) was not
// reachable from L yet, so V's
// inflight remains unchanged
__skb_queue_tail(L, skb1)
unix_state_unlock(L)
for u in gc_candidates:
if (u.inflight)
scan_children(u, inc_inflight_move_tail)
// V count=1 inflight=2 (!)
If there is a GC-candidate listening socket, lock/unlock its state. This
makes GC wait until the end of any ongoing connect() to that socket. After
flipping the lock, a possibly SCM-laden embryo is already enqueued. And if
there is another embryo coming, it can not possibly carry SCM_RIGHTS. At
this point, unix_inflight() can not happen because unix_gc_lock is already
taken. Inflight graph remains unaffected. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: validate the parameters of bo mapping operations more clearly
Verify the parameters of
amdgpu_vm_bo_(map/replace_map/clearing_mappings) in one common place. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: delay all of ath9k_wmi_event_tasklet() until init is complete
The ath9k_wmi_event_tasklet() used in ath9k_htc assumes that all the data
structures have been fully initialised by the time it runs. However, because of
the order in which things are initialised, this is not guaranteed to be the
case, because the device is exposed to the USB subsystem before the ath9k driver
initialisation is completed.
We already committed a partial fix for this in commit:
8b3046abc99e ("ath9k_htc: fix NULL pointer dereference at ath9k_htc_tx_get_packet()")
However, that commit only aborted the WMI_TXSTATUS_EVENTID command in the event
tasklet, pairing it with an "initialisation complete" bit in the TX struct. It
seems syzbot managed to trigger the race for one of the other commands as well,
so let's just move the existing synchronisation bit to cover the whole
tasklet (setting it at the end of ath9k_htc_probe_device() instead of inside
ath9k_tx_init()). |
| In the Linux kernel, the following vulnerability has been resolved:
dm: call the resume method on internal suspend
There is this reported crash when experimenting with the lvm2 testsuite.
The list corruption is caused by the fact that the postsuspend and resume
methods were not paired correctly; there were two consecutive calls to the
origin_postsuspend function. The second call attempts to remove the
"hash_list" entry from a list, while it was already removed by the first
call.
Fix __dm_internal_resume so that it calls the preresume and resume
methods of the table's targets.
If a preresume method of some target fails, we are in a tricky situation.
We can't return an error because dm_internal_resume isn't supposed to
return errors. We can't return success, because then the "resume" and
"postsuspend" methods would not be paired correctly. So, we set the
DMF_SUSPENDED flag and we fake normal suspend - it may confuse userspace
tools, but it won't cause a kernel crash.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:56!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 8343 Comm: dmsetup Not tainted 6.8.0-rc6 #4
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
RIP: 0010:__list_del_entry_valid_or_report+0x77/0xc0
<snip>
RSP: 0018:ffff8881b831bcc0 EFLAGS: 00010282
RAX: 000000000000004e RBX: ffff888143b6eb80 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffff819053d0 RDI: 00000000ffffffff
RBP: ffff8881b83a3400 R08: 00000000fffeffff R09: 0000000000000058
R10: 0000000000000000 R11: ffffffff81a24080 R12: 0000000000000001
R13: ffff88814538e000 R14: ffff888143bc6dc0 R15: ffffffffa02e4bb0
FS: 00000000f7c0f780(0000) GS:ffff8893f0a40000(0000) knlGS:0000000000000000
CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033
CR2: 0000000057fb5000 CR3: 0000000143474000 CR4: 00000000000006b0
Call Trace:
<TASK>
? die+0x2d/0x80
? do_trap+0xeb/0xf0
? __list_del_entry_valid_or_report+0x77/0xc0
? do_error_trap+0x60/0x80
? __list_del_entry_valid_or_report+0x77/0xc0
? exc_invalid_op+0x49/0x60
? __list_del_entry_valid_or_report+0x77/0xc0
? asm_exc_invalid_op+0x16/0x20
? table_deps+0x1b0/0x1b0 [dm_mod]
? __list_del_entry_valid_or_report+0x77/0xc0
origin_postsuspend+0x1a/0x50 [dm_snapshot]
dm_table_postsuspend_targets+0x34/0x50 [dm_mod]
dm_suspend+0xd8/0xf0 [dm_mod]
dev_suspend+0x1f2/0x2f0 [dm_mod]
? table_deps+0x1b0/0x1b0 [dm_mod]
ctl_ioctl+0x300/0x5f0 [dm_mod]
dm_compat_ctl_ioctl+0x7/0x10 [dm_mod]
__x64_compat_sys_ioctl+0x104/0x170
do_syscall_64+0x184/0x1b0
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0xf7e6aead
<snip>
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: xilinx - call finalize with bh disabled
When calling crypto_finalize_request, BH should be disabled to avoid
triggering the following calltrace:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 74 at crypto/crypto_engine.c:58 crypto_finalize_request+0xa0/0x118
Modules linked in: cryptodev(O)
CPU: 2 PID: 74 Comm: firmware:zynqmp Tainted: G O 6.8.0-rc1-yocto-standard #323
Hardware name: ZynqMP ZCU102 Rev1.0 (DT)
pstate: 40000005 (nZcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : crypto_finalize_request+0xa0/0x118
lr : crypto_finalize_request+0x104/0x118
sp : ffffffc085353ce0
x29: ffffffc085353ce0 x28: 0000000000000000 x27: ffffff8808ea8688
x26: ffffffc081715038 x25: 0000000000000000 x24: ffffff880100db00
x23: ffffff880100da80 x22: 0000000000000000 x21: 0000000000000000
x20: ffffff8805b14000 x19: ffffff880100da80 x18: 0000000000010450
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000003 x13: 0000000000000000 x12: ffffff880100dad0
x11: 0000000000000000 x10: ffffffc0832dcd08 x9 : ffffffc0812416d8
x8 : 00000000000001f4 x7 : ffffffc0830d2830 x6 : 0000000000000001
x5 : ffffffc082091000 x4 : ffffffc082091658 x3 : 0000000000000000
x2 : ffffffc7f9653000 x1 : 0000000000000000 x0 : ffffff8802d20000
Call trace:
crypto_finalize_request+0xa0/0x118
crypto_finalize_aead_request+0x18/0x30
zynqmp_handle_aes_req+0xcc/0x388
crypto_pump_work+0x168/0x2d8
kthread_worker_fn+0xfc/0x3a0
kthread+0x118/0x138
ret_from_fork+0x10/0x20
irq event stamp: 40
hardirqs last enabled at (39): [<ffffffc0812416f8>] _raw_spin_unlock_irqrestore+0x70/0xb0
hardirqs last disabled at (40): [<ffffffc08122d208>] el1_dbg+0x28/0x90
softirqs last enabled at (36): [<ffffffc080017dec>] kernel_neon_begin+0x8c/0xf0
softirqs last disabled at (34): [<ffffffc080017dc0>] kernel_neon_begin+0x60/0xf0
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: drop any code related to SCM_RIGHTS
This is dead code after we dropped support for passing io_uring fds
over SCM_RIGHTS, get rid of it. |
| In the Linux kernel, the following vulnerability has been resolved:
wireguard: netlink: check for dangling peer via is_dead instead of empty list
If all peers are removed via wg_peer_remove_all(), rather than setting
peer_list to empty, the peer is added to a temporary list with a head on
the stack of wg_peer_remove_all(). If a netlink dump is resumed and the
cursored peer is one that has been removed via wg_peer_remove_all(), it
will iterate from that peer and then attempt to dump freed peers.
Fix this by instead checking peer->is_dead, which was explictly created
for this purpose. Also move up the device_update_lock lockdep assertion,
since reading is_dead relies on that.
It can be reproduced by a small script like:
echo "Setting config..."
ip link add dev wg0 type wireguard
wg setconf wg0 /big-config
(
while true; do
echo "Showing config..."
wg showconf wg0 > /dev/null
done
) &
sleep 4
wg setconf wg0 <(printf "[Peer]\nPublicKey=$(wg genkey)\n")
Resulting in:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x182a/0x1b20
Read of size 8 at addr ffff88811956ec70 by task wg/59
CPU: 2 PID: 59 Comm: wg Not tainted 6.8.0-rc2-debug+ #5
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x70
print_address_description.constprop.0+0x2c/0x380
print_report+0xab/0x250
kasan_report+0xba/0xf0
__lock_acquire+0x182a/0x1b20
lock_acquire+0x191/0x4b0
down_read+0x80/0x440
get_peer+0x140/0xcb0
wg_get_device_dump+0x471/0x1130 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gt: Reset queue_priority_hint on parking
Originally, with strict in order execution, we could complete execution
only when the queue was empty. Preempt-to-busy allows replacement of an
active request that may complete before the preemption is processed by
HW. If that happens, the request is retired from the queue, but the
queue_priority_hint remains set, preventing direct submission until
after the next CS interrupt is processed.
This preempt-to-busy race can be triggered by the heartbeat, which will
also act as the power-management barrier and upon completion allow us to
idle the HW. We may process the completion of the heartbeat, and begin
parking the engine before the CS event that restores the
queue_priority_hint, causing us to fail the assertion that it is MIN.
<3>[ 166.210729] __engine_park:283 GEM_BUG_ON(engine->sched_engine->queue_priority_hint != (-((int)(~0U >> 1)) - 1))
<0>[ 166.210781] Dumping ftrace buffer:
<0>[ 166.210795] ---------------------------------
...
<0>[ 167.302811] drm_fdin-1097 2..s1. 165741070us : trace_ports: 0000:00:02.0 rcs0: promote { ccid:20 1217:2 prio 0 }
<0>[ 167.302861] drm_fdin-1097 2d.s2. 165741072us : execlists_submission_tasklet: 0000:00:02.0 rcs0: preempting last=1217:2, prio=0, hint=2147483646
<0>[ 167.302928] drm_fdin-1097 2d.s2. 165741072us : __i915_request_unsubmit: 0000:00:02.0 rcs0: fence 1217:2, current 0
<0>[ 167.302992] drm_fdin-1097 2d.s2. 165741073us : __i915_request_submit: 0000:00:02.0 rcs0: fence 3:4660, current 4659
<0>[ 167.303044] drm_fdin-1097 2d.s1. 165741076us : execlists_submission_tasklet: 0000:00:02.0 rcs0: context:3 schedule-in, ccid:40
<0>[ 167.303095] drm_fdin-1097 2d.s1. 165741077us : trace_ports: 0000:00:02.0 rcs0: submit { ccid:40 3:4660* prio 2147483646 }
<0>[ 167.303159] kworker/-89 11..... 165741139us : i915_request_retire.part.0: 0000:00:02.0 rcs0: fence c90:2, current 2
<0>[ 167.303208] kworker/-89 11..... 165741148us : __intel_context_do_unpin: 0000:00:02.0 rcs0: context:c90 unpin
<0>[ 167.303272] kworker/-89 11..... 165741159us : i915_request_retire.part.0: 0000:00:02.0 rcs0: fence 1217:2, current 2
<0>[ 167.303321] kworker/-89 11..... 165741166us : __intel_context_do_unpin: 0000:00:02.0 rcs0: context:1217 unpin
<0>[ 167.303384] kworker/-89 11..... 165741170us : i915_request_retire.part.0: 0000:00:02.0 rcs0: fence 3:4660, current 4660
<0>[ 167.303434] kworker/-89 11d..1. 165741172us : __intel_context_retire: 0000:00:02.0 rcs0: context:1216 retire runtime: { total:56028ns, avg:56028ns }
<0>[ 167.303484] kworker/-89 11..... 165741198us : __engine_park: 0000:00:02.0 rcs0: parked
<0>[ 167.303534] <idle>-0 5d.H3. 165741207us : execlists_irq_handler: 0000:00:02.0 rcs0: semaphore yield: 00000040
<0>[ 167.303583] kworker/-89 11..... 165741397us : __intel_context_retire: 0000:00:02.0 rcs0: context:1217 retire runtime: { total:325575ns, avg:0ns }
<0>[ 167.303756] kworker/-89 11..... 165741777us : __intel_context_retire: 0000:00:02.0 rcs0: context:c90 retire runtime: { total:0ns, avg:0ns }
<0>[ 167.303806] kworker/-89 11..... 165742017us : __engine_park: __engine_park:283 GEM_BUG_ON(engine->sched_engine->queue_priority_hint != (-((int)(~0U >> 1)) - 1))
<0>[ 167.303811] ---------------------------------
<4>[ 167.304722] ------------[ cut here ]------------
<2>[ 167.304725] kernel BUG at drivers/gpu/drm/i915/gt/intel_engine_pm.c:283!
<4>[ 167.304731] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
<4>[ 167.304734] CPU: 11 PID: 89 Comm: kworker/11:1 Tainted: G W 6.8.0-rc2-CI_DRM_14193-gc655e0fd2804+ #1
<4>[ 167.304736] Hardware name: Intel Corporation Rocket Lake Client Platform/RocketLake S UDIMM 6L RVP, BIOS RKLSFWI1.R00.3173.A03.2204210138 04/21/2022
<4>[ 167.304738] Workqueue: i915-unordered retire_work_handler [i915]
<4>[ 16
---truncated--- |