| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: fddi: fix UAF in fza_probe
fp is netdev private data and it cannot be
used after free_netdev() call. Using fp after free_netdev()
can cause UAF bug. Fix it by moving free_netdev() after error message.
TURBOchannel adapter") |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Track subprog poke descriptors correctly and fix use-after-free
Subprograms are calling map_poke_track(), but on program release there is no
hook to call map_poke_untrack(). However, on program release, the aux memory
(and poke descriptor table) is freed even though we still have a reference to
it in the element list of the map aux data. When we run map_poke_run(), we then
end up accessing free'd memory, triggering KASAN in prog_array_map_poke_run():
[...]
[ 402.824689] BUG: KASAN: use-after-free in prog_array_map_poke_run+0xc2/0x34e
[ 402.824698] Read of size 4 at addr ffff8881905a7940 by task hubble-fgs/4337
[ 402.824705] CPU: 1 PID: 4337 Comm: hubble-fgs Tainted: G I 5.12.0+ #399
[ 402.824715] Call Trace:
[ 402.824719] dump_stack+0x93/0xc2
[ 402.824727] print_address_description.constprop.0+0x1a/0x140
[ 402.824736] ? prog_array_map_poke_run+0xc2/0x34e
[ 402.824740] ? prog_array_map_poke_run+0xc2/0x34e
[ 402.824744] kasan_report.cold+0x7c/0xd8
[ 402.824752] ? prog_array_map_poke_run+0xc2/0x34e
[ 402.824757] prog_array_map_poke_run+0xc2/0x34e
[ 402.824765] bpf_fd_array_map_update_elem+0x124/0x1a0
[...]
The elements concerned are walked as follows:
for (i = 0; i < elem->aux->size_poke_tab; i++) {
poke = &elem->aux->poke_tab[i];
[...]
The access to size_poke_tab is a 4 byte read, verified by checking offsets
in the KASAN dump:
[ 402.825004] The buggy address belongs to the object at ffff8881905a7800
which belongs to the cache kmalloc-1k of size 1024
[ 402.825008] The buggy address is located 320 bytes inside of
1024-byte region [ffff8881905a7800, ffff8881905a7c00)
The pahole output of bpf_prog_aux:
struct bpf_prog_aux {
[...]
/* --- cacheline 5 boundary (320 bytes) --- */
u32 size_poke_tab; /* 320 4 */
[...]
In general, subprograms do not necessarily manage their own data structures.
For example, BTF func_info and linfo are just pointers to the main program
structure. This allows reference counting and cleanup to be done on the latter
which simplifies their management a bit. The aux->poke_tab struct, however,
did not follow this logic. The initial proposed fix for this use-after-free
bug further embedded poke data tracking into the subprogram with proper
reference counting. However, Daniel and Alexei questioned why we were treating
these objects special; I agree, its unnecessary. The fix here removes the per
subprogram poke table allocation and map tracking and instead simply points
the aux->poke_tab pointer at the main programs poke table. This way, map
tracking is simplified to the main program and we do not need to manage them
per subprogram.
This also means, bpf_prog_free_deferred(), which unwinds the program reference
counting and kfrees objects, needs to ensure that we don't try to double free
the poke_tab when free'ing the subprog structures. This is easily solved by
NULL'ing the poke_tab pointer. The second detail is to ensure that per
subprogram JIT logic only does fixups on poke_tab[] entries it owns. To do
this, we add a pointer in the poke structure to point at the subprogram value
so JITs can easily check while walking the poke_tab structure if the current
entry belongs to the current program. The aux pointer is stable and therefore
suitable for such comparison. On the jit_subprogs() error path, we omit
cleaning up the poke->aux field because these are only ever referenced from
the JIT side, but on error we will never make it to the JIT, so its fine to
leave them dangling. Removing these pointers would complicate the error path
for no reason. However, we do need to untrack all poke descriptors from the
main program as otherwise they could race with the freeing of JIT memory from
the subprograms. Lastly, a748c6975dea3 ("bpf: propagate poke des
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
igc: Fix use-after-free error during reset
Cleans the next descriptor to watch (next_to_watch) when cleaning the
TX ring.
Failure to do so can cause invalid memory accesses. If igc_poll() runs
while the controller is being reset this can lead to the driver try to
free a skb that was already freed.
Log message:
[ 101.525242] refcount_t: underflow; use-after-free.
[ 101.525251] WARNING: CPU: 1 PID: 646 at lib/refcount.c:28 refcount_warn_saturate+0xab/0xf0
[ 101.525259] Modules linked in: sch_etf(E) sch_mqprio(E) rfkill(E) intel_rapl_msr(E) intel_rapl_common(E)
x86_pkg_temp_thermal(E) intel_powerclamp(E) coretemp(E) binfmt_misc(E) kvm_intel(E) kvm(E) irqbypass(E) crc32_pclmul(E)
ghash_clmulni_intel(E) aesni_intel(E) mei_wdt(E) libaes(E) crypto_simd(E) cryptd(E) glue_helper(E) snd_hda_codec_hdmi(E)
rapl(E) intel_cstate(E) snd_hda_intel(E) snd_intel_dspcfg(E) sg(E) soundwire_intel(E) intel_uncore(E) at24(E)
soundwire_generic_allocation(E) iTCO_wdt(E) soundwire_cadence(E) intel_pmc_bxt(E) serio_raw(E) snd_hda_codec(E)
iTCO_vendor_support(E) watchdog(E) snd_hda_core(E) snd_hwdep(E) snd_soc_core(E) snd_compress(E) snd_pcsp(E)
soundwire_bus(E) snd_pcm(E) evdev(E) snd_timer(E) mei_me(E) snd(E) soundcore(E) mei(E) configfs(E) ip_tables(E) x_tables(E)
autofs4(E) ext4(E) crc32c_generic(E) crc16(E) mbcache(E) jbd2(E) sd_mod(E) t10_pi(E) crc_t10dif(E) crct10dif_generic(E)
i915(E) ahci(E) libahci(E) ehci_pci(E) igb(E) xhci_pci(E) ehci_hcd(E)
[ 101.525303] drm_kms_helper(E) dca(E) xhci_hcd(E) libata(E) crct10dif_pclmul(E) cec(E) crct10dif_common(E) tsn(E) igc(E)
e1000e(E) ptp(E) i2c_i801(E) crc32c_intel(E) psmouse(E) i2c_algo_bit(E) i2c_smbus(E) scsi_mod(E) lpc_ich(E) pps_core(E)
usbcore(E) drm(E) button(E) video(E)
[ 101.525318] CPU: 1 PID: 646 Comm: irq/37-enp7s0-T Tainted: G E 5.10.30-rt37-tsn1-rt-ipipe #ipipe
[ 101.525320] Hardware name: SIEMENS AG SIMATIC IPC427D/A5E31233588, BIOS V17.02.09 03/31/2017
[ 101.525322] RIP: 0010:refcount_warn_saturate+0xab/0xf0
[ 101.525325] Code: 05 31 48 44 01 01 e8 f0 c6 42 00 0f 0b c3 80 3d 1f 48 44 01 00 75 90 48 c7 c7 78 a8 f3 a6 c6 05 0f 48
44 01 01 e8 d1 c6 42 00 <0f> 0b c3 80 3d fe 47 44 01 00 0f 85 6d ff ff ff 48 c7 c7 d0 a8 f3
[ 101.525327] RSP: 0018:ffffbdedc0917cb8 EFLAGS: 00010286
[ 101.525329] RAX: 0000000000000000 RBX: ffff98fd6becbf40 RCX: 0000000000000001
[ 101.525330] RDX: 0000000000000001 RSI: ffffffffa6f2700c RDI: 00000000ffffffff
[ 101.525332] RBP: ffff98fd6becc14c R08: ffffffffa7463d00 R09: ffffbdedc0917c50
[ 101.525333] R10: ffffffffa74c3578 R11: 0000000000000034 R12: 00000000ffffff00
[ 101.525335] R13: ffff98fd6b0b1000 R14: 0000000000000039 R15: ffff98fd6be35c40
[ 101.525337] FS: 0000000000000000(0000) GS:ffff98fd6e240000(0000) knlGS:0000000000000000
[ 101.525339] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 101.525341] CR2: 00007f34135a3a70 CR3: 0000000150210003 CR4: 00000000001706e0
[ 101.525343] Call Trace:
[ 101.525346] sock_wfree+0x9c/0xa0
[ 101.525353] unix_destruct_scm+0x7b/0xa0
[ 101.525358] skb_release_head_state+0x40/0x90
[ 101.525362] skb_release_all+0xe/0x30
[ 101.525364] napi_consume_skb+0x57/0x160
[ 101.525367] igc_poll+0xb7/0xc80 [igc]
[ 101.525376] ? sched_clock+0x5/0x10
[ 101.525381] ? sched_clock_cpu+0xe/0x100
[ 101.525385] net_rx_action+0x14c/0x410
[ 101.525388] __do_softirq+0xe9/0x2f4
[ 101.525391] __local_bh_enable_ip+0xe3/0x110
[ 101.525395] ? irq_finalize_oneshot.part.47+0xe0/0xe0
[ 101.525398] irq_forced_thread_fn+0x6a/0x80
[ 101.525401] irq_thread+0xe8/0x180
[ 101.525403] ? wake_threads_waitq+0x30/0x30
[ 101.525406] ? irq_thread_check_affinity+0xd0/0xd0
[ 101.525408] kthread+0x183/0x1a0
[ 101.525412] ? kthread_park+0x80/0x80
[ 101.525415] ret_from_fork+0x22/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Fix use-after-free error during reset
Cleans the next descriptor to watch (next_to_watch) when cleaning the
TX ring.
Failure to do so can cause invalid memory accesses. If igb_poll() runs
while the controller is reset this can lead to the driver try to free
a skb that was already freed.
(The crash is harder to reproduce with the igb driver, but the same
potential problem exists as the code is identical to igc) |
| In the Linux kernel, the following vulnerability has been resolved:
xdp, net: Fix use-after-free in bpf_xdp_link_release
The problem occurs between dev_get_by_index() and dev_xdp_attach_link().
At this point, dev_xdp_uninstall() is called. Then xdp link will not be
detached automatically when dev is released. But link->dev already
points to dev, when xdp link is released, dev will still be accessed,
but dev has been released.
dev_get_by_index() |
link->dev = dev |
| rtnl_lock()
| unregister_netdevice_many()
| dev_xdp_uninstall()
| rtnl_unlock()
rtnl_lock(); |
dev_xdp_attach_link() |
rtnl_unlock(); |
| netdev_run_todo() // dev released
bpf_xdp_link_release() |
/* access dev. |
use-after-free */ |
[ 45.966867] BUG: KASAN: use-after-free in bpf_xdp_link_release+0x3b8/0x3d0
[ 45.967619] Read of size 8 at addr ffff00000f9980c8 by task a.out/732
[ 45.968297]
[ 45.968502] CPU: 1 PID: 732 Comm: a.out Not tainted 5.13.0+ #22
[ 45.969222] Hardware name: linux,dummy-virt (DT)
[ 45.969795] Call trace:
[ 45.970106] dump_backtrace+0x0/0x4c8
[ 45.970564] show_stack+0x30/0x40
[ 45.970981] dump_stack_lvl+0x120/0x18c
[ 45.971470] print_address_description.constprop.0+0x74/0x30c
[ 45.972182] kasan_report+0x1e8/0x200
[ 45.972659] __asan_report_load8_noabort+0x2c/0x50
[ 45.973273] bpf_xdp_link_release+0x3b8/0x3d0
[ 45.973834] bpf_link_free+0xd0/0x188
[ 45.974315] bpf_link_put+0x1d0/0x218
[ 45.974790] bpf_link_release+0x3c/0x58
[ 45.975291] __fput+0x20c/0x7e8
[ 45.975706] ____fput+0x24/0x30
[ 45.976117] task_work_run+0x104/0x258
[ 45.976609] do_notify_resume+0x894/0xaf8
[ 45.977121] work_pending+0xc/0x328
[ 45.977575]
[ 45.977775] The buggy address belongs to the page:
[ 45.978369] page:fffffc00003e6600 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x4f998
[ 45.979522] flags: 0x7fffe0000000000(node=0|zone=0|lastcpupid=0x3ffff)
[ 45.980349] raw: 07fffe0000000000 fffffc00003e6708 ffff0000dac3c010 0000000000000000
[ 45.981309] raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
[ 45.982259] page dumped because: kasan: bad access detected
[ 45.982948]
[ 45.983153] Memory state around the buggy address:
[ 45.983753] ffff00000f997f80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 45.984645] ffff00000f998000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 45.985533] >ffff00000f998080: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 45.986419] ^
[ 45.987112] ffff00000f998100: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 45.988006] ffff00000f998180: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 45.988895] ==================================================================
[ 45.989773] Disabling lock debugging due to kernel taint
[ 45.990552] Kernel panic - not syncing: panic_on_warn set ...
[ 45.991166] CPU: 1 PID: 732 Comm: a.out Tainted: G B 5.13.0+ #22
[ 45.991929] Hardware name: linux,dummy-virt (DT)
[ 45.992448] Call trace:
[ 45.992753] dump_backtrace+0x0/0x4c8
[ 45.993208] show_stack+0x30/0x40
[ 45.993627] dump_stack_lvl+0x120/0x18c
[ 45.994113] dump_stack+0x1c/0x34
[ 45.994530] panic+0x3a4/0x7d8
[ 45.994930] end_report+0x194/0x198
[ 45.995380] kasan_report+0x134/0x200
[ 45.995850] __asan_report_load8_noabort+0x2c/0x50
[ 45.996453] bpf_xdp_link_release+0x3b8/0x3d0
[ 45.997007] bpf_link_free+0xd0/0x188
[ 45.997474] bpf_link_put+0x1d0/0x218
[ 45.997942] bpf_link_release+0x3c/0x58
[ 45.998429] __fput+0x20c/0x7e8
[ 45.998833] ____fput+0x24/0x30
[ 45.999247] task_work_run+0x104/0x258
[ 45.999731] do_notify_resume+0x894/0xaf8
[ 46.000236] work_pending
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: pci_generic: Fix possible use-after-free in mhi_pci_remove()
This driver's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix use-after-free in nfs4_init_client()
KASAN reports a use-after-free when attempting to mount two different
exports through two different NICs that belong to the same server.
Olga was able to hit this with kernels starting somewhere between 5.7
and 5.10, but I traced the patch that introduced the clear_bit() call to
4.13. So something must have changed in the refcounting of the clp
pointer to make this call to nfs_put_client() the very last one. |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: fix possible use-after-free in smsc75xx_bind
The commit 46a8b29c6306 ("net: usb: fix memory leak in smsc75xx_bind")
fails to clean up the work scheduled in smsc75xx_reset->
smsc75xx_set_multicast, which leads to use-after-free if the work is
scheduled to start after the deallocation. In addition, this patch
also removes a dangling pointer - dev->data[0].
This patch calls cancel_work_sync to cancel the scheduled work and set
the dangling pointer to NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: fix potential use-after-free in ec_bhf_remove
static void ec_bhf_remove(struct pci_dev *dev)
{
...
struct ec_bhf_priv *priv = netdev_priv(net_dev);
unregister_netdev(net_dev);
free_netdev(net_dev);
pci_iounmap(dev, priv->dma_io);
pci_iounmap(dev, priv->io);
...
}
priv is netdev private data, but it is used
after free_netdev(). It can cause use-after-free when accessing priv
pointer. So, fix it by moving free_netdev() after pci_iounmap()
calls. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: fix Use-after-Free, hold skb ref while in use
This patch fixes a Use-after-Free found by the syzbot.
The problem is that a skb is taken from the per-session skb queue,
without incrementing the ref count. This leads to a Use-after-Free if
the skb is taken concurrently from the session queue due to a CTS. |
| In the Linux kernel, the following vulnerability has been resolved:
net: bridge: fix vlan tunnel dst refcnt when egressing
The egress tunnel code uses dst_clone() and directly sets the result
which is wrong because the entry might have 0 refcnt or be already deleted,
causing number of problems. It also triggers the WARN_ON() in dst_hold()[1]
when a refcnt couldn't be taken. Fix it by using dst_hold_safe() and
checking if a reference was actually taken before setting the dst.
[1] dmesg WARN_ON log and following refcnt errors
WARNING: CPU: 5 PID: 38 at include/net/dst.h:230 br_handle_egress_vlan_tunnel+0x10b/0x134 [bridge]
Modules linked in: 8021q garp mrp bridge stp llc bonding ipv6 virtio_net
CPU: 5 PID: 38 Comm: ksoftirqd/5 Kdump: loaded Tainted: G W 5.13.0-rc3+ #360
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
RIP: 0010:br_handle_egress_vlan_tunnel+0x10b/0x134 [bridge]
Code: e8 85 bc 01 e1 45 84 f6 74 90 45 31 f6 85 db 48 c7 c7 a0 02 19 a0 41 0f 94 c6 31 c9 31 d2 44 89 f6 e8 64 bc 01 e1 85 db 75 02 <0f> 0b 31 c9 31 d2 44 89 f6 48 c7 c7 70 02 19 a0 e8 4b bc 01 e1 49
RSP: 0018:ffff8881003d39e8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffffffffa01902a0
RBP: ffff8881040c6700 R08: 0000000000000000 R09: 0000000000000001
R10: 2ce93d0054fe0d00 R11: 54fe0d00000e0000 R12: ffff888109515000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000401
FS: 0000000000000000(0000) GS:ffff88822bf40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f42ba70f030 CR3: 0000000109926000 CR4: 00000000000006e0
Call Trace:
br_handle_vlan+0xbc/0xca [bridge]
__br_forward+0x23/0x164 [bridge]
deliver_clone+0x41/0x48 [bridge]
br_handle_frame_finish+0x36f/0x3aa [bridge]
? skb_dst+0x2e/0x38 [bridge]
? br_handle_ingress_vlan_tunnel+0x3e/0x1c8 [bridge]
? br_handle_frame_finish+0x3aa/0x3aa [bridge]
br_handle_frame+0x2c3/0x377 [bridge]
? __skb_pull+0x33/0x51
? vlan_do_receive+0x4f/0x36a
? br_handle_frame_finish+0x3aa/0x3aa [bridge]
__netif_receive_skb_core+0x539/0x7c6
? __list_del_entry_valid+0x16e/0x1c2
__netif_receive_skb_list_core+0x6d/0xd6
netif_receive_skb_list_internal+0x1d9/0x1fa
gro_normal_list+0x22/0x3e
dev_gro_receive+0x55b/0x600
? detach_buf_split+0x58/0x140
napi_gro_receive+0x94/0x12e
virtnet_poll+0x15d/0x315 [virtio_net]
__napi_poll+0x2c/0x1c9
net_rx_action+0xe6/0x1fb
__do_softirq+0x115/0x2d8
run_ksoftirqd+0x18/0x20
smpboot_thread_fn+0x183/0x19c
? smpboot_unregister_percpu_thread+0x66/0x66
kthread+0x10a/0x10f
? kthread_mod_delayed_work+0xb6/0xb6
ret_from_fork+0x22/0x30
---[ end trace 49f61b07f775fd2b ]---
dst_release: dst:00000000c02d677a refcnt:-1
dst_release underflow |
| In the Linux kernel, the following vulnerability has been resolved:
sched/fair: Prevent dead task groups from regaining cfs_rq's
Kevin is reporting crashes which point to a use-after-free of a cfs_rq
in update_blocked_averages(). Initial debugging revealed that we've
live cfs_rq's (on_list=1) in an about to be kfree()'d task group in
free_fair_sched_group(). However, it was unclear how that can happen.
His kernel config happened to lead to a layout of struct sched_entity
that put the 'my_q' member directly into the middle of the object
which makes it incidentally overlap with SLUB's freelist pointer.
That, in combination with SLAB_FREELIST_HARDENED's freelist pointer
mangling, leads to a reliable access violation in form of a #GP which
made the UAF fail fast.
Michal seems to have run into the same issue[1]. He already correctly
diagnosed that commit a7b359fc6a37 ("sched/fair: Correctly insert
cfs_rq's to list on unthrottle") is causing the preconditions for the
UAF to happen by re-adding cfs_rq's also to task groups that have no
more running tasks, i.e. also to dead ones. His analysis, however,
misses the real root cause and it cannot be seen from the crash
backtrace only, as the real offender is tg_unthrottle_up() getting
called via sched_cfs_period_timer() via the timer interrupt at an
inconvenient time.
When unregister_fair_sched_group() unlinks all cfs_rq's from the dying
task group, it doesn't protect itself from getting interrupted. If the
timer interrupt triggers while we iterate over all CPUs or after
unregister_fair_sched_group() has finished but prior to unlinking the
task group, sched_cfs_period_timer() will execute and walk the list of
task groups, trying to unthrottle cfs_rq's, i.e. re-add them to the
dying task group. These will later -- in free_fair_sched_group() -- be
kfree()'ed while still being linked, leading to the fireworks Kevin
and Michal are seeing.
To fix this race, ensure the dying task group gets unlinked first.
However, simply switching the order of unregistering and unlinking the
task group isn't sufficient, as concurrent RCU walkers might still see
it, as can be seen below:
CPU1: CPU2:
: timer IRQ:
: do_sched_cfs_period_timer():
: :
: distribute_cfs_runtime():
: rcu_read_lock();
: :
: unthrottle_cfs_rq():
sched_offline_group(): :
: walk_tg_tree_from(…,tg_unthrottle_up,…):
list_del_rcu(&tg->list); :
(1) : list_for_each_entry_rcu(child, &parent->children, siblings)
: :
(2) list_del_rcu(&tg->siblings); :
: tg_unthrottle_up():
unregister_fair_sched_group(): struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
: :
list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); :
: :
: if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
(3) : list_add_leaf_cfs_rq(cfs_rq);
: :
: :
: :
: :
:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: dpaa2-eth: fix use-after-free in dpaa2_eth_remove
Access to netdev after free_netdev() will cause use-after-free bug.
Move debug log before free_netdev() call to avoid it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/prime: Fix use after free in mmap with drm_gem_ttm_mmap
drm_gem_ttm_mmap() drops a reference to the gem object on success. If
the gem object's refcount == 1 on entry to drm_gem_prime_mmap(), that
drop will free the gem object, and the subsequent drm_gem_object_get()
will be a UAF. Fix by grabbing a reference before calling the mmap
helper.
This issue was forseen when the reference dropping was adding in
commit 9786b65bc61ac ("drm/ttm: fix mmap refcounting"):
"For that to work properly the drm_gem_object_get() call in
drm_gem_ttm_mmap() must be moved so it happens before calling
obj->funcs->mmap(), otherwise the gem refcount would go down
to zero." |
| In the Linux kernel, the following vulnerability has been resolved:
net/tls: Fix use-after-free after the TLS device goes down and up
When a netdev with active TLS offload goes down, tls_device_down is
called to stop the offload and tear down the TLS context. However, the
socket stays alive, and it still points to the TLS context, which is now
deallocated. If a netdev goes up, while the connection is still active,
and the data flow resumes after a number of TCP retransmissions, it will
lead to a use-after-free of the TLS context.
This commit addresses this bug by keeping the context alive until its
normal destruction, and implements the necessary fallbacks, so that the
connection can resume in software (non-offloaded) kTLS mode.
On the TX side tls_sw_fallback is used to encrypt all packets. The RX
side already has all the necessary fallbacks, because receiving
non-decrypted packets is supported. The thing needed on the RX side is
to block resync requests, which are normally produced after receiving
non-decrypted packets.
The necessary synchronization is implemented for a graceful teardown:
first the fallbacks are deployed, then the driver resources are released
(it used to be possible to have a tls_dev_resync after tls_dev_del).
A new flag called TLS_RX_DEV_DEGRADED is added to indicate the fallback
mode. It's used to skip the RX resync logic completely, as it becomes
useless, and some objects may be released (for example, resync_async,
which is allocated and freed by the driver). |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: fix freeing unallocated p2pmem
In case p2p device was found but the p2p pool is empty, the nvme target
is still trying to free the sgl from the p2p pool instead of the
regular sgl pool and causing a crash (BUG() is called). Instead, assign
the p2p_dev for the request only if it was allocated from p2p pool.
This is the crash that was caused:
[Sun May 30 19:13:53 2021] ------------[ cut here ]------------
[Sun May 30 19:13:53 2021] kernel BUG at lib/genalloc.c:518!
[Sun May 30 19:13:53 2021] invalid opcode: 0000 [#1] SMP PTI
...
[Sun May 30 19:13:53 2021] kernel BUG at lib/genalloc.c:518!
...
[Sun May 30 19:13:53 2021] RIP: 0010:gen_pool_free_owner+0xa8/0xb0
...
[Sun May 30 19:13:53 2021] Call Trace:
[Sun May 30 19:13:53 2021] ------------[ cut here ]------------
[Sun May 30 19:13:53 2021] pci_free_p2pmem+0x2b/0x70
[Sun May 30 19:13:53 2021] pci_p2pmem_free_sgl+0x4f/0x80
[Sun May 30 19:13:53 2021] nvmet_req_free_sgls+0x1e/0x80 [nvmet]
[Sun May 30 19:13:53 2021] kernel BUG at lib/genalloc.c:518!
[Sun May 30 19:13:53 2021] nvmet_rdma_release_rsp+0x4e/0x1f0 [nvmet_rdma]
[Sun May 30 19:13:53 2021] nvmet_rdma_send_done+0x1c/0x60 [nvmet_rdma] |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: fix ltout double free on completion race
Always remove linked timeout on io_link_timeout_fn() from the master
request link list, otherwise we may get use-after-free when first
io_link_timeout_fn() puts linked timeout in the fail path, and then
will be found and put on master's free. |
| In the Linux kernel, the following vulnerability has been resolved:
pid: take a reference when initializing `cad_pid`
During boot, kernel_init_freeable() initializes `cad_pid` to the init
task's struct pid. Later on, we may change `cad_pid` via a sysctl, and
when this happens proc_do_cad_pid() will increment the refcount on the
new pid via get_pid(), and will decrement the refcount on the old pid
via put_pid(). As we never called get_pid() when we initialized
`cad_pid`, we decrement a reference we never incremented, can therefore
free the init task's struct pid early. As there can be dangling
references to the struct pid, we can later encounter a use-after-free
(e.g. when delivering signals).
This was spotted when fuzzing v5.13-rc3 with Syzkaller, but seems to
have been around since the conversion of `cad_pid` to struct pid in
commit 9ec52099e4b8 ("[PATCH] replace cad_pid by a struct pid") from the
pre-KASAN stone age of v2.6.19.
Fix this by getting a reference to the init task's struct pid when we
assign it to `cad_pid`.
Full KASAN splat below.
==================================================================
BUG: KASAN: use-after-free in ns_of_pid include/linux/pid.h:153 [inline]
BUG: KASAN: use-after-free in task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509
Read of size 4 at addr ffff23794dda0004 by task syz-executor.0/273
CPU: 1 PID: 273 Comm: syz-executor.0 Not tainted 5.12.0-00001-g9aef892b2d15 #1
Hardware name: linux,dummy-virt (DT)
Call trace:
ns_of_pid include/linux/pid.h:153 [inline]
task_active_pid_ns+0xc0/0xc8 kernel/pid.c:509
do_notify_parent+0x308/0xe60 kernel/signal.c:1950
exit_notify kernel/exit.c:682 [inline]
do_exit+0x2334/0x2bd0 kernel/exit.c:845
do_group_exit+0x108/0x2c8 kernel/exit.c:922
get_signal+0x4e4/0x2a88 kernel/signal.c:2781
do_signal arch/arm64/kernel/signal.c:882 [inline]
do_notify_resume+0x300/0x970 arch/arm64/kernel/signal.c:936
work_pending+0xc/0x2dc
Allocated by task 0:
slab_post_alloc_hook+0x50/0x5c0 mm/slab.h:516
slab_alloc_node mm/slub.c:2907 [inline]
slab_alloc mm/slub.c:2915 [inline]
kmem_cache_alloc+0x1f4/0x4c0 mm/slub.c:2920
alloc_pid+0xdc/0xc00 kernel/pid.c:180
copy_process+0x2794/0x5e18 kernel/fork.c:2129
kernel_clone+0x194/0x13c8 kernel/fork.c:2500
kernel_thread+0xd4/0x110 kernel/fork.c:2552
rest_init+0x44/0x4a0 init/main.c:687
arch_call_rest_init+0x1c/0x28
start_kernel+0x520/0x554 init/main.c:1064
0x0
Freed by task 270:
slab_free_hook mm/slub.c:1562 [inline]
slab_free_freelist_hook+0x98/0x260 mm/slub.c:1600
slab_free mm/slub.c:3161 [inline]
kmem_cache_free+0x224/0x8e0 mm/slub.c:3177
put_pid.part.4+0xe0/0x1a8 kernel/pid.c:114
put_pid+0x30/0x48 kernel/pid.c:109
proc_do_cad_pid+0x190/0x1b0 kernel/sysctl.c:1401
proc_sys_call_handler+0x338/0x4b0 fs/proc/proc_sysctl.c:591
proc_sys_write+0x34/0x48 fs/proc/proc_sysctl.c:617
call_write_iter include/linux/fs.h:1977 [inline]
new_sync_write+0x3ac/0x510 fs/read_write.c:518
vfs_write fs/read_write.c:605 [inline]
vfs_write+0x9c4/0x1018 fs/read_write.c:585
ksys_write+0x124/0x240 fs/read_write.c:658
__do_sys_write fs/read_write.c:670 [inline]
__se_sys_write fs/read_write.c:667 [inline]
__arm64_sys_write+0x78/0xb0 fs/read_write.c:667
__invoke_syscall arch/arm64/kernel/syscall.c:37 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:49 [inline]
el0_svc_common.constprop.1+0x16c/0x388 arch/arm64/kernel/syscall.c:129
do_el0_svc+0xf8/0x150 arch/arm64/kernel/syscall.c:168
el0_svc+0x28/0x38 arch/arm64/kernel/entry-common.c:416
el0_sync_handler+0x134/0x180 arch/arm64/kernel/entry-common.c:432
el0_sync+0x154/0x180 arch/arm64/kernel/entry.S:701
The buggy address belongs to the object at ffff23794dda0000
which belongs to the cache pid of size 224
The buggy address is located 4 bytes inside of
224-byte region [ff
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
xen-netback: take a reference to the RX task thread
Do this in order to prevent the task from being freed if the thread
returns (which can be triggered by the frontend) before the call to
kthread_stop done as part of the backend tear down. Not taking the
reference will lead to a use-after-free in that scenario. Such
reference was taken before but dropped as part of the rework done in
2ac061ce97f4.
Reintroduce the reference taking and add a comment this time
explaining why it's needed.
This is XSA-374 / CVE-2021-28691. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix use-after-free in nft_set_catchall_destroy()
We need to use list_for_each_entry_safe() iterator
because we can not access @catchall after kfree_rcu() call.
syzbot reported:
BUG: KASAN: use-after-free in nft_set_catchall_destroy net/netfilter/nf_tables_api.c:4486 [inline]
BUG: KASAN: use-after-free in nft_set_destroy net/netfilter/nf_tables_api.c:4504 [inline]
BUG: KASAN: use-after-free in nft_set_destroy+0x3fd/0x4f0 net/netfilter/nf_tables_api.c:4493
Read of size 8 at addr ffff8880716e5b80 by task syz-executor.3/8871
CPU: 1 PID: 8871 Comm: syz-executor.3 Not tainted 5.16.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description.constprop.0.cold+0x8d/0x2ed mm/kasan/report.c:247
__kasan_report mm/kasan/report.c:433 [inline]
kasan_report.cold+0x83/0xdf mm/kasan/report.c:450
nft_set_catchall_destroy net/netfilter/nf_tables_api.c:4486 [inline]
nft_set_destroy net/netfilter/nf_tables_api.c:4504 [inline]
nft_set_destroy+0x3fd/0x4f0 net/netfilter/nf_tables_api.c:4493
__nft_release_table+0x79f/0xcd0 net/netfilter/nf_tables_api.c:9626
nft_rcv_nl_event+0x4f8/0x670 net/netfilter/nf_tables_api.c:9688
notifier_call_chain+0xb5/0x200 kernel/notifier.c:83
blocking_notifier_call_chain kernel/notifier.c:318 [inline]
blocking_notifier_call_chain+0x67/0x90 kernel/notifier.c:306
netlink_release+0xcb6/0x1dd0 net/netlink/af_netlink.c:788
__sock_release+0xcd/0x280 net/socket.c:649
sock_close+0x18/0x20 net/socket.c:1314
__fput+0x286/0x9f0 fs/file_table.c:280
task_work_run+0xdd/0x1a0 kernel/task_work.c:164
tracehook_notify_resume include/linux/tracehook.h:189 [inline]
exit_to_user_mode_loop kernel/entry/common.c:175 [inline]
exit_to_user_mode_prepare+0x27e/0x290 kernel/entry/common.c:207
__syscall_exit_to_user_mode_work kernel/entry/common.c:289 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:300
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f75fbf28adb
Code: 0f 05 48 3d 00 f0 ff ff 77 45 c3 0f 1f 40 00 48 83 ec 18 89 7c 24 0c e8 63 fc ff ff 8b 7c 24 0c 41 89 c0 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 89 44 24 0c e8 a1 fc ff ff 8b 44
RSP: 002b:00007ffd8da7ec10 EFLAGS: 00000293 ORIG_RAX: 0000000000000003
RAX: 0000000000000000 RBX: 0000000000000004 RCX: 00007f75fbf28adb
RDX: 00007f75fc08e828 RSI: ffffffffffffffff RDI: 0000000000000003
RBP: 00007f75fc08a960 R08: 0000000000000000 R09: 00007f75fc08e830
R10: 00007ffd8da7ed10 R11: 0000000000000293 R12: 00000000002067c3
R13: 00007ffd8da7ed10 R14: 00007f75fc088f60 R15: 0000000000000032
</TASK>
Allocated by task 8886:
kasan_save_stack+0x1e/0x50 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:46 [inline]
set_alloc_info mm/kasan/common.c:434 [inline]
____kasan_kmalloc mm/kasan/common.c:513 [inline]
____kasan_kmalloc mm/kasan/common.c:472 [inline]
__kasan_kmalloc+0xa6/0xd0 mm/kasan/common.c:522
kasan_kmalloc include/linux/kasan.h:269 [inline]
kmem_cache_alloc_trace+0x1ea/0x4a0 mm/slab.c:3575
kmalloc include/linux/slab.h:590 [inline]
nft_setelem_catchall_insert net/netfilter/nf_tables_api.c:5544 [inline]
nft_setelem_insert net/netfilter/nf_tables_api.c:5562 [inline]
nft_add_set_elem+0x232e/0x2f40 net/netfilter/nf_tables_api.c:5936
nf_tables_newsetelem+0x6ff/0xbb0 net/netfilter/nf_tables_api.c:6032
nfnetlink_rcv_batch+0x1710/0x25f0 net/netfilter/nfnetlink.c:513
nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:634 [inline]
nfnetlink_rcv+0x3af/0x420 net/netfilter/nfnetlink.c:652
netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1345
netlink_sendmsg+0x904/0xdf0 net/netlink/af_netlink.c:1921
sock_sendmsg_nosec net/
---truncated--- |