| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pp: Fix potential NULL pointer dereference in atomctrl_initialize_mc_reg_table
The function atomctrl_initialize_mc_reg_table() and
atomctrl_initialize_mc_reg_table_v2_2() does not check the return
value of smu_atom_get_data_table(). If smu_atom_get_data_table()
fails to retrieve vram_info, it returns NULL which is later
dereferenced. |
| An attacker who successfully exploited these vulnerabilities could cause the robot to stop, make the robot controller inaccessible.
The vulnerability could potentially be exploited to perform unauthorized actions by an attacker. This vulnerability arises under specific condition when specially crafted message is processed by the system.
Below are reported vulnerabilities in the Robot Ware versions.
* IRC5- RobotWare 6 < 6.15.06 except 6.10.10, and 6.13.07
* OmniCore- RobotWare 7 < 7.14 |
| An issue was discovered in Foxit PDF and Editor for Windows before 13.2 and 2025 before 2025.2. When pages in a PDF are deleted via JavaScript, the application may fail to properly update internal states. Subsequent annotation management operations assume these states are valid, causing dereference of invalid or released memory. This can lead to memory corruption, application crashes, and potentially allow an attacker to execute arbitrary code. |
| An issue was discovered in Foxit PDF and Editor for Windows and macOS before 13.2 and 2025 before 2025.2. When pages in a PDF are deleted via JavaScript, the application may fail to properly update internal states. Subsequent annotation management operations assume these states are valid, causing dereference of invalid or released memory. This can lead to memory corruption, application crashes, and potentially allow an attacker to execute arbitrary code. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: dell_rbu: Fix list usage
Pass the correct list head to list_for_each_entry*() when looping through
the packet list.
Without this patch, reading the packet data via sysfs will show the data
incorrectly (because it starts at the wrong packet), and clearing the
packet list will result in a NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: Add NULL check in aspeed_lpc_enable_snoop()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
aspeed_lpc_enable_snoop() does not check for this case, which results in a
NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue.
[arj: Fix Fixes: tag to use subject from 3772e5da4454] |
| In the Linux kernel, the following vulnerability has been resolved:
backlight: pm8941: Add NULL check in wled_configure()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
wled_configure() does not check for this case, which results in a NULL
pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (asus-ec-sensors) check sensor index in read_string()
Prevent a potential invalid memory access when the requested sensor
is not found.
find_ec_sensor_index() may return a negative value (e.g. -ENOENT),
but its result was used without checking, which could lead to
undefined behavior when passed to get_sensor_info().
Add a proper check to return -EINVAL if sensor_index is negative.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[groeck: Return error code returned from find_ec_sensor_index] |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix null-ptr-deref in jfs_ioc_trim
[ Syzkaller Report ]
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000087: 0000 [#1
KASAN: null-ptr-deref in range [0x0000000000000438-0x000000000000043f]
CPU: 2 UID: 0 PID: 10614 Comm: syz-executor.0 Not tainted
6.13.0-rc6-gfbfd64d25c7a-dirty #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Sched_ext: serialise (enabled+all), task: runnable_at=-30ms
RIP: 0010:jfs_ioc_trim+0x34b/0x8f0
Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93
90 82 fe ff 4c 89 ff 31 f6
RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206
RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a
RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001
RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000
R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438
FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die_body+0x61/0xb0
? die_addr+0xb1/0xe0
? exc_general_protection+0x333/0x510
? asm_exc_general_protection+0x26/0x30
? jfs_ioc_trim+0x34b/0x8f0
jfs_ioctl+0x3c8/0x4f0
? __pfx_jfs_ioctl+0x10/0x10
? __pfx_jfs_ioctl+0x10/0x10
__se_sys_ioctl+0x269/0x350
? __pfx___se_sys_ioctl+0x10/0x10
? do_syscall_64+0xfb/0x210
do_syscall_64+0xee/0x210
? syscall_exit_to_user_mode+0x1e0/0x330
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fe51f4903ad
Code: c3 e8 a7 2b 00 00 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 89 f8 48
89 f7 48 89 d6 48 89 ca 4d
RSP: 002b:00007fe5202250c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fe51f5cbf80 RCX: 00007fe51f4903ad
RDX: 0000000020000680 RSI: 00000000c0185879 RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe520225640
R13: 000000000000000e R14: 00007fe51f44fca0 R15: 00007fe52021d000
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
RIP: 0010:jfs_ioc_trim+0x34b/0x8f0
Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93
90 82 fe ff 4c 89 ff 31 f6
RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206
RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a
RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001
RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000
R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438
FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Kernel panic - not syncing: Fatal exception
[ Analysis ]
We believe that we have found a concurrency bug in the `fs/jfs` module
that results in a null pointer dereference. There is a closely related
issue which has been fixed:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d6c1b3599b2feb5c7291f5ac3a36e5fa7cedb234
... but, unfortunately, the accepted patch appears to still be
susceptible to a null pointer dereference under some interleavings.
To trigger the bug, we think that `JFS_SBI(ipbmap->i_sb)->bmap` is set
to NULL in `dbFreeBits` and then dereferenced in `jfs_ioc_trim`. This
bug manifests quite rarely under normal circumstances, but is
triggereable from a syz-program. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix fb_set_var to prevent null-ptr-deref in fb_videomode_to_var
If fb_add_videomode() in fb_set_var() fails to allocate memory for
fb_videomode, later it may lead to a null-ptr dereference in
fb_videomode_to_var(), as the fb_info is registered while not having the
mode in modelist that is expected to be there, i.e. the one that is
described in fb_info->var.
================================================================
general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 1 PID: 30371 Comm: syz-executor.1 Not tainted 5.10.226-syzkaller #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:fb_videomode_to_var+0x24/0x610 drivers/video/fbdev/core/modedb.c:901
Call Trace:
display_to_var+0x3a/0x7c0 drivers/video/fbdev/core/fbcon.c:929
fbcon_resize+0x3e2/0x8f0 drivers/video/fbdev/core/fbcon.c:2071
resize_screen drivers/tty/vt/vt.c:1176 [inline]
vc_do_resize+0x53a/0x1170 drivers/tty/vt/vt.c:1263
fbcon_modechanged+0x3ac/0x6e0 drivers/video/fbdev/core/fbcon.c:2720
fbcon_update_vcs+0x43/0x60 drivers/video/fbdev/core/fbcon.c:2776
do_fb_ioctl+0x6d2/0x740 drivers/video/fbdev/core/fbmem.c:1128
fb_ioctl+0xe7/0x150 drivers/video/fbdev/core/fbmem.c:1203
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:739
do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x67/0xd1
================================================================
The reason is that fb_info->var is being modified in fb_set_var(), and
then fb_videomode_to_var() is called. If it fails to add the mode to
fb_info->modelist, fb_set_var() returns error, but does not restore the
old value of fb_info->var. Restore fb_info->var on failure the same way
it is done earlier in the function.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
calipso: Don't call calipso functions for AF_INET sk.
syzkaller reported a null-ptr-deref in txopt_get(). [0]
The offset 0x70 was of struct ipv6_txoptions in struct ipv6_pinfo,
so struct ipv6_pinfo was NULL there.
However, this never happens for IPv6 sockets as inet_sk(sk)->pinet6
is always set in inet6_create(), meaning the socket was not IPv6 one.
The root cause is missing validation in netlbl_conn_setattr().
netlbl_conn_setattr() switches branches based on struct
sockaddr.sa_family, which is passed from userspace. However,
netlbl_conn_setattr() does not check if the address family matches
the socket.
The syzkaller must have called connect() for an IPv6 address on
an IPv4 socket.
We have a proper validation in tcp_v[46]_connect(), but
security_socket_connect() is called in the earlier stage.
Let's copy the validation to netlbl_conn_setattr().
[0]:
Oops: general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077]
CPU: 2 UID: 0 PID: 12928 Comm: syz.9.1677 Not tainted 6.12.0 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:txopt_get include/net/ipv6.h:390 [inline]
RIP: 0010:
Code: 02 00 00 49 8b ac 24 f8 02 00 00 e8 84 69 2a fd e8 ff 00 16 fd 48 8d 7d 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 53 02 00 00 48 8b 6d 70 48 85 ed 0f 84 ab 01 00
RSP: 0018:ffff88811b8afc48 EFLAGS: 00010212
RAX: dffffc0000000000 RBX: 1ffff11023715f8a RCX: ffffffff841ab00c
RDX: 000000000000000e RSI: ffffc90007d9e000 RDI: 0000000000000070
RBP: 0000000000000000 R08: ffffed1023715f9d R09: ffffed1023715f9e
R10: ffffed1023715f9d R11: 0000000000000003 R12: ffff888123075f00
R13: ffff88810245bd80 R14: ffff888113646780 R15: ffff888100578a80
FS: 00007f9019bd7640(0000) GS:ffff8882d2d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f901b927bac CR3: 0000000104788003 CR4: 0000000000770ef0
PKRU: 80000000
Call Trace:
<TASK>
calipso_sock_setattr+0x56/0x80 net/netlabel/netlabel_calipso.c:557
netlbl_conn_setattr+0x10c/0x280 net/netlabel/netlabel_kapi.c:1177
selinux_netlbl_socket_connect_helper+0xd3/0x1b0 security/selinux/netlabel.c:569
selinux_netlbl_socket_connect_locked security/selinux/netlabel.c:597 [inline]
selinux_netlbl_socket_connect+0xb6/0x100 security/selinux/netlabel.c:615
selinux_socket_connect+0x5f/0x80 security/selinux/hooks.c:4931
security_socket_connect+0x50/0xa0 security/security.c:4598
__sys_connect_file+0xa4/0x190 net/socket.c:2067
__sys_connect+0x12c/0x170 net/socket.c:2088
__do_sys_connect net/socket.c:2098 [inline]
__se_sys_connect net/socket.c:2095 [inline]
__x64_sys_connect+0x73/0xb0 net/socket.c:2095
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xaa/0x1b0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f901b61a12d
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f9019bd6fa8 EFLAGS: 00000246 ORIG_RAX: 000000000000002a
RAX: ffffffffffffffda RBX: 00007f901b925fa0 RCX: 00007f901b61a12d
RDX: 000000000000001c RSI: 0000200000000140 RDI: 0000000000000003
RBP: 00007f901b701505 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007f901b5b62a0 R15: 00007f9019bb7000
</TASK>
Modules linked in: |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: handle hdr_first_de() return value
The hdr_first_de() function returns a pointer to a struct NTFS_DE. This
pointer may be NULL. To handle the NULL error effectively, it is important
to implement an error handler. This will help manage potential errors
consistently.
Additionally, error handling for the return value already exists at other
points where this function is called.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: bcm: rpi: Add NULL check in raspberrypi_clk_register()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
raspberrypi_clk_register() does not check for this case, which results
in a NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix do_register_framebuffer to prevent null-ptr-deref in fb_videomode_to_var
If fb_add_videomode() in do_register_framebuffer() fails to allocate
memory for fb_videomode, it will later lead to a null-ptr dereference in
fb_videomode_to_var(), as the fb_info is registered while not having the
mode in modelist that is expected to be there, i.e. the one that is
described in fb_info->var.
================================================================
general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 1 PID: 30371 Comm: syz-executor.1 Not tainted 5.10.226-syzkaller #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:fb_videomode_to_var+0x24/0x610 drivers/video/fbdev/core/modedb.c:901
Call Trace:
display_to_var+0x3a/0x7c0 drivers/video/fbdev/core/fbcon.c:929
fbcon_resize+0x3e2/0x8f0 drivers/video/fbdev/core/fbcon.c:2071
resize_screen drivers/tty/vt/vt.c:1176 [inline]
vc_do_resize+0x53a/0x1170 drivers/tty/vt/vt.c:1263
fbcon_modechanged+0x3ac/0x6e0 drivers/video/fbdev/core/fbcon.c:2720
fbcon_update_vcs+0x43/0x60 drivers/video/fbdev/core/fbcon.c:2776
do_fb_ioctl+0x6d2/0x740 drivers/video/fbdev/core/fbmem.c:1128
fb_ioctl+0xe7/0x150 drivers/video/fbdev/core/fbmem.c:1203
vfs_ioctl fs/ioctl.c:48 [inline]
__do_sys_ioctl fs/ioctl.c:753 [inline]
__se_sys_ioctl fs/ioctl.c:739 [inline]
__x64_sys_ioctl+0x19a/0x210 fs/ioctl.c:739
do_syscall_64+0x33/0x40 arch/x86/entry/common.c:46
entry_SYSCALL_64_after_hwframe+0x67/0xd1
================================================================
Even though fbcon_init() checks beforehand if fb_match_mode() in
var_to_display() fails, it can not prevent the panic because fbcon_init()
does not return error code. Considering this and the comment in the code
about fb_match_mode() returning NULL - "This should not happen" - it is
better to prevent registering the fb_info if its mode was not set
successfully. Also move fb_add_videomode() closer to the beginning of
do_register_framebuffer() to avoid having to do the cleanup on fail.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: Initialize ssc before laundromat_work to prevent NULL dereference
In nfs4_state_start_net(), laundromat_work may access nfsd_ssc through
nfs4_laundromat -> nfsd4_ssc_expire_umount. If nfsd_ssc isn't initialized,
this can cause NULL pointer dereference.
Normally the delayed start of laundromat_work allows sufficient time for
nfsd_ssc initialization to complete. However, when the kernel waits too
long for userspace responses (e.g. in nfs4_state_start_net ->
nfsd4_end_grace -> nfsd4_record_grace_done -> nfsd4_cld_grace_done ->
cld_pipe_upcall -> __cld_pipe_upcall -> wait_for_completion path), the
delayed work may start before nfsd_ssc initialization finishes.
Fix this by moving nfsd_ssc initialization before starting laundromat_work. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on sbi->total_valid_block_count
syzbot reported a f2fs bug as below:
------------[ cut here ]------------
kernel BUG at fs/f2fs/f2fs.h:2521!
RIP: 0010:dec_valid_block_count+0x3b2/0x3c0 fs/f2fs/f2fs.h:2521
Call Trace:
f2fs_truncate_data_blocks_range+0xc8c/0x11a0 fs/f2fs/file.c:695
truncate_dnode+0x417/0x740 fs/f2fs/node.c:973
truncate_nodes+0x3ec/0xf50 fs/f2fs/node.c:1014
f2fs_truncate_inode_blocks+0x8e3/0x1370 fs/f2fs/node.c:1197
f2fs_do_truncate_blocks+0x840/0x12b0 fs/f2fs/file.c:810
f2fs_truncate_blocks+0x10d/0x300 fs/f2fs/file.c:838
f2fs_truncate+0x417/0x720 fs/f2fs/file.c:888
f2fs_setattr+0xc4f/0x12f0 fs/f2fs/file.c:1112
notify_change+0xbca/0xe90 fs/attr.c:552
do_truncate+0x222/0x310 fs/open.c:65
handle_truncate fs/namei.c:3466 [inline]
do_open fs/namei.c:3849 [inline]
path_openat+0x2e4f/0x35d0 fs/namei.c:4004
do_filp_open+0x284/0x4e0 fs/namei.c:4031
do_sys_openat2+0x12b/0x1d0 fs/open.c:1429
do_sys_open fs/open.c:1444 [inline]
__do_sys_creat fs/open.c:1522 [inline]
__se_sys_creat fs/open.c:1516 [inline]
__x64_sys_creat+0x124/0x170 fs/open.c:1516
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/syscall_64.c:94
The reason is: in fuzzed image, sbi->total_valid_block_count is
inconsistent w/ mapped blocks indexed by inode, so, we should
not trigger panic for such case, instead, let's print log and
set fsck flag. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix null pointer dereference in destroy_previous_session
If client set ->PreviousSessionId on kerberos session setup stage,
NULL pointer dereference error will happen. Since sess->user is not
set yet, It can pass the user argument as NULL to destroy_previous_session.
sess->user will be set in ksmbd_krb5_authenticate(). So this patch move
calling destroy_previous_session() after ksmbd_krb5_authenticate(). |
| In the Linux kernel, the following vulnerability has been resolved:
atm: clip: prevent NULL deref in clip_push()
Blamed commit missed that vcc_destroy_socket() calls
clip_push() with a NULL skb.
If clip_devs is NULL, clip_push() then crashes when reading
skb->truesize. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: handle csum tree error with rescue=ibadroots correctly
[BUG]
There is syzbot based reproducer that can crash the kernel, with the
following call trace: (With some debug output added)
DEBUG: rescue=ibadroots parsed
BTRFS: device fsid 14d642db-7b15-43e4-81e6-4b8fac6a25f8 devid 1 transid 8 /dev/loop0 (7:0) scanned by repro (1010)
BTRFS info (device loop0): first mount of filesystem 14d642db-7b15-43e4-81e6-4b8fac6a25f8
BTRFS info (device loop0): using blake2b (blake2b-256-generic) checksum algorithm
BTRFS info (device loop0): using free-space-tree
BTRFS warning (device loop0): checksum verify failed on logical 5312512 mirror 1 wanted 0xb043382657aede36608fd3386d6b001692ff406164733d94e2d9a180412c6003 found 0x810ceb2bacb7f0f9eb2bf3b2b15c02af867cb35ad450898169f3b1f0bd818651 level 0
DEBUG: read tree root path failed for tree csum, ret=-5
BTRFS warning (device loop0): checksum verify failed on logical 5328896 mirror 1 wanted 0x51be4e8b303da58e6340226815b70e3a93592dac3f30dd510c7517454de8567a found 0x51be4e8b303da58e634022a315b70e3a93592dac3f30dd510c7517454de8567a level 0
BTRFS warning (device loop0): checksum verify failed on logical 5292032 mirror 1 wanted 0x1924ccd683be9efc2fa98582ef58760e3848e9043db8649ee382681e220cdee4 found 0x0cb6184f6e8799d9f8cb335dccd1d1832da1071d12290dab3b85b587ecacca6e level 0
process 'repro' launched './file2' with NULL argv: empty string added
DEBUG: no csum root, idatacsums=0 ibadroots=134217728
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f]
CPU: 5 UID: 0 PID: 1010 Comm: repro Tainted: G OE 6.15.0-custom+ #249 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 02/02/2022
RIP: 0010:btrfs_lookup_csum+0x93/0x3d0 [btrfs]
Call Trace:
<TASK>
btrfs_lookup_bio_sums+0x47a/0xdf0 [btrfs]
btrfs_submit_bbio+0x43e/0x1a80 [btrfs]
submit_one_bio+0xde/0x160 [btrfs]
btrfs_readahead+0x498/0x6a0 [btrfs]
read_pages+0x1c3/0xb20
page_cache_ra_order+0x4b5/0xc20
filemap_get_pages+0x2d3/0x19e0
filemap_read+0x314/0xde0
__kernel_read+0x35b/0x900
bprm_execve+0x62e/0x1140
do_execveat_common.isra.0+0x3fc/0x520
__x64_sys_execveat+0xdc/0x130
do_syscall_64+0x54/0x1d0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
---[ end trace 0000000000000000 ]---
[CAUSE]
Firstly the fs has a corrupted csum tree root, thus to mount the fs we
have to go "ro,rescue=ibadroots" mount option.
Normally with that mount option, a bad csum tree root should set
BTRFS_FS_STATE_NO_DATA_CSUMS flag, so that any future data read will
ignore csum search.
But in this particular case, we have the following call trace that
caused NULL csum root, but not setting BTRFS_FS_STATE_NO_DATA_CSUMS:
load_global_roots_objectid():
ret = btrfs_search_slot();
/* Succeeded */
btrfs_item_key_to_cpu()
found = true;
/* We found the root item for csum tree. */
root = read_tree_root_path();
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
/*
* Since we have rescue=ibadroots mount option,
* @ret is still 0.
*/
break;
if (!found || ret) {
/* @found is true, @ret is 0, error handling for csum
* tree is skipped.
*/
}
This means we completely skipped to set BTRFS_FS_STATE_NO_DATA_CSUMS if
the csum tree is corrupted, which results unexpected later csum lookup.
[FIX]
If read_tree_root_path() failed, always populate @ret to the error
number.
As at the end of the function, we need @ret to determine if we need to
do the extra error handling for csum tree. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: uartlite: register uart driver in init
When two instances of uart devices are probing, a concurrency race can
occur. If one thread calls uart_register_driver function, which first
allocates and assigns memory to 'uart_state' member of uart_driver
structure, the other instance can bypass uart driver registration and
call ulite_assign. This calls uart_add_one_port, which expects the uart
driver to be fully initialized. This leads to a kernel panic due to a
null pointer dereference:
[ 8.143581] BUG: kernel NULL pointer dereference, address: 00000000000002b8
[ 8.156982] #PF: supervisor write access in kernel mode
[ 8.156984] #PF: error_code(0x0002) - not-present page
[ 8.156986] PGD 0 P4D 0
...
[ 8.180668] RIP: 0010:mutex_lock+0x19/0x30
[ 8.188624] Call Trace:
[ 8.188629] ? __die_body.cold+0x1a/0x1f
[ 8.195260] ? page_fault_oops+0x15c/0x290
[ 8.209183] ? __irq_resolve_mapping+0x47/0x80
[ 8.209187] ? exc_page_fault+0x64/0x140
[ 8.209190] ? asm_exc_page_fault+0x22/0x30
[ 8.209196] ? mutex_lock+0x19/0x30
[ 8.223116] uart_add_one_port+0x60/0x440
[ 8.223122] ? proc_tty_register_driver+0x43/0x50
[ 8.223126] ? tty_register_driver+0x1ca/0x1e0
[ 8.246250] ulite_probe+0x357/0x4b0 [uartlite]
To prevent it, move uart driver registration in to init function. This
will ensure that uart_driver is always registered when probe function
is called. |