| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
af_packet: fix vlan_get_tci() vs MSG_PEEK
Blamed commit forgot MSG_PEEK case, allowing a crash [1] as found
by syzbot.
Rework vlan_get_tci() to not touch skb at all,
so that it can be used from many cpus on the same skb.
Add a const qualifier to skb argument.
[1]
skbuff: skb_under_panic: text:ffffffff8a8da482 len:32 put:14 head:ffff88807a1d5800 data:ffff88807a1d5810 tail:0x14 end:0x140 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:206 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 UID: 0 PID: 5880 Comm: syz-executor172 Not tainted 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:skb_panic net/core/skbuff.c:206 [inline]
RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216
Code: 0b 8d 48 c7 c6 9e 6c 26 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 3a 5a 79 f7 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3
RSP: 0018:ffffc90003baf5b8 EFLAGS: 00010286
RAX: 0000000000000087 RBX: dffffc0000000000 RCX: 8565c1eec37aa000
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffff88802616fb50 R08: ffffffff817f0a4c R09: 1ffff92000775e50
R10: dffffc0000000000 R11: fffff52000775e51 R12: 0000000000000140
R13: ffff88807a1d5800 R14: ffff88807a1d5810 R15: 0000000000000014
FS: 00007fa03261f6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffd65753000 CR3: 0000000031720000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_push+0xe5/0x100 net/core/skbuff.c:2636
vlan_get_tci+0x272/0x550 net/packet/af_packet.c:565
packet_recvmsg+0x13c9/0x1ef0 net/packet/af_packet.c:3616
sock_recvmsg_nosec net/socket.c:1044 [inline]
sock_recvmsg+0x22f/0x280 net/socket.c:1066
____sys_recvmsg+0x1c6/0x480 net/socket.c:2814
___sys_recvmsg net/socket.c:2856 [inline]
do_recvmmsg+0x426/0xab0 net/socket.c:2951
__sys_recvmmsg net/socket.c:3025 [inline]
__do_sys_recvmmsg net/socket.c:3048 [inline]
__se_sys_recvmmsg net/socket.c:3041 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3041
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 |
| In the Linux kernel, the following vulnerability has been resolved:
af_packet: fix vlan_get_protocol_dgram() vs MSG_PEEK
Blamed commit forgot MSG_PEEK case, allowing a crash [1] as found
by syzbot.
Rework vlan_get_protocol_dgram() to not touch skb at all,
so that it can be used from many cpus on the same skb.
Add a const qualifier to skb argument.
[1]
skbuff: skb_under_panic: text:ffffffff8a8ccd05 len:29 put:14 head:ffff88807fc8e400 data:ffff88807fc8e3f4 tail:0x11 end:0x140 dev:<NULL>
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:206 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 1 UID: 0 PID: 5892 Comm: syz-executor883 Not tainted 6.13.0-rc4-syzkaller-00054-gd6ef8b40d075 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
RIP: 0010:skb_panic net/core/skbuff.c:206 [inline]
RIP: 0010:skb_under_panic+0x14b/0x150 net/core/skbuff.c:216
Code: 0b 8d 48 c7 c6 86 d5 25 8e 48 8b 54 24 08 8b 0c 24 44 8b 44 24 04 4d 89 e9 50 41 54 41 57 41 56 e8 5a 69 79 f7 48 83 c4 20 90 <0f> 0b 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3
RSP: 0018:ffffc900038d7638 EFLAGS: 00010282
RAX: 0000000000000087 RBX: dffffc0000000000 RCX: 609ffd18ea660600
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffff88802483c8d0 R08: ffffffff817f0a8c R09: 1ffff9200071ae60
R10: dffffc0000000000 R11: fffff5200071ae61 R12: 0000000000000140
R13: ffff88807fc8e400 R14: ffff88807fc8e3f4 R15: 0000000000000011
FS: 00007fbac5e006c0(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fbac5e00d58 CR3: 000000001238e000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_push+0xe5/0x100 net/core/skbuff.c:2636
vlan_get_protocol_dgram+0x165/0x290 net/packet/af_packet.c:585
packet_recvmsg+0x948/0x1ef0 net/packet/af_packet.c:3552
sock_recvmsg_nosec net/socket.c:1033 [inline]
sock_recvmsg+0x22f/0x280 net/socket.c:1055
____sys_recvmsg+0x1c6/0x480 net/socket.c:2803
___sys_recvmsg net/socket.c:2845 [inline]
do_recvmmsg+0x426/0xab0 net/socket.c:2940
__sys_recvmmsg net/socket.c:3014 [inline]
__do_sys_recvmmsg net/socket.c:3037 [inline]
__se_sys_recvmmsg net/socket.c:3030 [inline]
__x64_sys_recvmmsg+0x199/0x250 net/socket.c:3030
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Correct the migration DMA map direction
The SVM DMA device map direction should be set the same as
the DMA unmap setting, otherwise the DMA core will report
the following warning.
Before finialize this solution, there're some discussion on
the DMA mapping type(stream-based or coherent) in this KFD
migration case, followed by https://lore.kernel.org/all/04d4ab32
-45a1-4b88-86ee-fb0f35a0ca40@amd.com/T/.
As there's no dma_sync_single_for_*() in the DMA buffer accessed
that because this migration operation should be sync properly and
automatically. Give that there's might not be a performance problem
in various cache sync policy of DMA sync. Therefore, in order to
simplify the DMA direction setting alignment, let's set the DMA map
direction as BIDIRECTIONAL.
[ 150.834218] WARNING: CPU: 8 PID: 1812 at kernel/dma/debug.c:1028 check_unmap+0x1cc/0x930
[ 150.834225] Modules linked in: amdgpu(OE) amdxcp drm_exec(OE) gpu_sched drm_buddy(OE) drm_ttm_helper(OE) ttm(OE) drm_suballoc_helper(OE) drm_display_helper(OE) drm_kms_helper(OE) i2c_algo_bit rpcsec_gss_krb5 auth_rpcgss nfsv4 nfs lockd grace netfs xt_conntrack xt_MASQUERADE nf_conntrack_netlink xfrm_user xfrm_algo iptable_nat xt_addrtype iptable_filter br_netfilter nvme_fabrics overlay nfnetlink_cttimeout nfnetlink openvswitch nsh nf_conncount nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 libcrc32c bridge stp llc sch_fq_codel intel_rapl_msr amd_atl intel_rapl_common snd_hda_codec_realtek snd_hda_codec_generic snd_hda_scodec_component snd_hda_codec_hdmi snd_hda_intel snd_intel_dspcfg edac_mce_amd snd_pci_acp6x snd_hda_codec snd_acp_config snd_hda_core snd_hwdep snd_soc_acpi kvm_amd sunrpc snd_pcm kvm binfmt_misc snd_seq_midi crct10dif_pclmul snd_seq_midi_event ghash_clmulni_intel sha512_ssse3 snd_rawmidi nls_iso8859_1 sha256_ssse3 sha1_ssse3 snd_seq aesni_intel snd_seq_device crypto_simd snd_timer cryptd input_leds
[ 150.834310] wmi_bmof serio_raw k10temp rapl snd sp5100_tco ipmi_devintf soundcore ccp ipmi_msghandler cm32181 industrialio mac_hid msr parport_pc ppdev lp parport efi_pstore drm(OE) ip_tables x_tables pci_stub crc32_pclmul nvme ahci libahci i2c_piix4 r8169 nvme_core i2c_designware_pci realtek i2c_ccgx_ucsi video wmi hid_generic cdc_ether usbnet usbhid hid r8152 mii
[ 150.834354] CPU: 8 PID: 1812 Comm: rocrtst64 Tainted: G OE 6.10.0-custom #492
[ 150.834358] Hardware name: AMD Majolica-RN/Majolica-RN, BIOS RMJ1009A 06/13/2021
[ 150.834360] RIP: 0010:check_unmap+0x1cc/0x930
[ 150.834363] Code: c0 4c 89 4d c8 e8 34 bf 86 00 4c 8b 4d c8 4c 8b 45 c0 48 8b 4d b8 48 89 c6 41 57 4c 89 ea 48 c7 c7 80 49 b4 84 e8 b4 81 f3 ff <0f> 0b 48 c7 c7 04 83 ac 84 e8 76 ba fc ff 41 8b 76 4c 49 8d 7e 50
[ 150.834365] RSP: 0018:ffffaac5023739e0 EFLAGS: 00010086
[ 150.834368] RAX: 0000000000000000 RBX: ffffffff8566a2e0 RCX: 0000000000000027
[ 150.834370] RDX: ffff8f6a8f621688 RSI: 0000000000000001 RDI: ffff8f6a8f621680
[ 150.834372] RBP: ffffaac502373a30 R08: 00000000000000c9 R09: ffffaac502373850
[ 150.834373] R10: ffffaac502373848 R11: ffffffff84f46328 R12: ffffaac502373a40
[ 150.834375] R13: ffff8f6741045330 R14: ffff8f6741a77700 R15: ffffffff84ac831b
[ 150.834377] FS: 00007faf0fc94c00(0000) GS:ffff8f6a8f600000(0000) knlGS:0000000000000000
[ 150.834379] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 150.834381] CR2: 00007faf0b600020 CR3: 000000010a52e000 CR4: 0000000000350ef0
[ 150.834383] Call Trace:
[ 150.834385] <TASK>
[ 150.834387] ? show_regs+0x6d/0x80
[ 150.834393] ? __warn+0x8c/0x140
[ 150.834397] ? check_unmap+0x1cc/0x930
[ 150.834400] ? report_bug+0x193/0x1a0
[ 150.834406] ? handle_bug+0x46/0x80
[ 150.834410] ? exc_invalid_op+0x1d/0x80
[ 150.834413] ? asm_exc_invalid_op+0x1f/0x30
[ 150.834420] ? check_unmap+0x1cc/0x930
[ 150.834425] debug_dma_unmap_page+0x86/0x90
[ 150.834431] ? srso_return_thunk+0x5/0x5f
[ 150.834435]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: check return value of sock_recvmsg when draining clc data
When receiving clc msg, the field length in smc_clc_msg_hdr indicates the
length of msg should be received from network and the value should not be
fully trusted as it is from the network. Once the value of length exceeds
the value of buflen in function smc_clc_wait_msg it may run into deadloop
when trying to drain the remaining data exceeding buflen.
This patch checks the return value of sock_recvmsg when draining data in
case of deadloop in draining. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: imx8m: Probe the SoC driver as platform driver
With driver_async_probe=* on kernel command line, the following trace is
produced because on i.MX8M Plus hardware because the soc-imx8m.c driver
calls of_clk_get_by_name() which returns -EPROBE_DEFER because the clock
driver is not yet probed. This was not detected during regular testing
without driver_async_probe.
Convert the SoC code to platform driver and instantiate a platform device
in its current device_initcall() to probe the platform driver. Rework
.soc_revision callback to always return valid error code and return SoC
revision via parameter. This way, if anything in the .soc_revision callback
return -EPROBE_DEFER, it gets propagated to .probe and the .probe will get
retried later.
"
------------[ cut here ]------------
WARNING: CPU: 1 PID: 1 at drivers/soc/imx/soc-imx8m.c:115 imx8mm_soc_revision+0xdc/0x180
CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.11.0-next-20240924-00002-g2062bb554dea #603
Hardware name: DH electronics i.MX8M Plus DHCOM Premium Developer Kit (3) (DT)
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : imx8mm_soc_revision+0xdc/0x180
lr : imx8mm_soc_revision+0xd0/0x180
sp : ffff8000821fbcc0
x29: ffff8000821fbce0 x28: 0000000000000000 x27: ffff800081810120
x26: ffff8000818a9970 x25: 0000000000000006 x24: 0000000000824311
x23: ffff8000817f42c8 x22: ffff0000df8be210 x21: fffffffffffffdfb
x20: ffff800082780000 x19: 0000000000000001 x18: ffffffffffffffff
x17: ffff800081fff418 x16: ffff8000823e1000 x15: ffff0000c03b65e8
x14: ffff0000c00051b0 x13: ffff800082790000 x12: 0000000000000801
x11: ffff80008278ffff x10: ffff80008209d3a6 x9 : ffff80008062e95c
x8 : ffff8000821fb9a0 x7 : 0000000000000000 x6 : 00000000000080e3
x5 : ffff0000df8c03d8 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 0000000000000000 x1 : fffffffffffffdfb x0 : fffffffffffffdfb
Call trace:
imx8mm_soc_revision+0xdc/0x180
imx8_soc_init+0xb0/0x1e0
do_one_initcall+0x94/0x1a8
kernel_init_freeable+0x240/0x2a8
kernel_init+0x28/0x140
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
SoC: i.MX8MP revision 1.1
" |
| In the Linux kernel, the following vulnerability has been resolved:
quota: flush quota_release_work upon quota writeback
One of the paths quota writeback is called from is:
freeze_super()
sync_filesystem()
ext4_sync_fs()
dquot_writeback_dquots()
Since we currently don't always flush the quota_release_work queue in
this path, we can end up with the following race:
1. dquot are added to releasing_dquots list during regular operations.
2. FS Freeze starts, however, this does not flush the quota_release_work queue.
3. Freeze completes.
4. Kernel eventually tries to flush the workqueue while FS is frozen which
hits a WARN_ON since transaction gets started during frozen state:
ext4_journal_check_start+0x28/0x110 [ext4] (unreliable)
__ext4_journal_start_sb+0x64/0x1c0 [ext4]
ext4_release_dquot+0x90/0x1d0 [ext4]
quota_release_workfn+0x43c/0x4d0
Which is the following line:
WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE);
Which ultimately results in generic/390 failing due to dmesg
noise. This was detected on powerpc machine 15 cores.
To avoid this, make sure to flush the workqueue during
dquot_writeback_dquots() so we dont have any pending workitems after
freeze. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: netem: account for backlog updates from child qdisc
In general, 'qlen' of any classful qdisc should keep track of the
number of packets that the qdisc itself and all of its children holds.
In case of netem, 'qlen' only accounts for the packets in its internal
tfifo. When netem is used with a child qdisc, the child qdisc can use
'qdisc_tree_reduce_backlog' to inform its parent, netem, about created
or dropped SKBs. This function updates 'qlen' and the backlog statistics
of netem, but netem does not account for changes made by a child qdisc.
'qlen' then indicates the wrong number of packets in the tfifo.
If a child qdisc creates new SKBs during enqueue and informs its parent
about this, netem's 'qlen' value is increased. When netem dequeues the
newly created SKBs from the child, the 'qlen' in netem is not updated.
If 'qlen' reaches the configured sch->limit, the enqueue function stops
working, even though the tfifo is not full.
Reproduce the bug:
Ensure that the sender machine has GSO enabled. Configure netem as root
qdisc and tbf as its child on the outgoing interface of the machine
as follows:
$ tc qdisc add dev <oif> root handle 1: netem delay 100ms limit 100
$ tc qdisc add dev <oif> parent 1:0 tbf rate 50Mbit burst 1542 latency 50ms
Send bulk TCP traffic out via this interface, e.g., by running an iPerf3
client on the machine. Check the qdisc statistics:
$ tc -s qdisc show dev <oif>
Statistics after 10s of iPerf3 TCP test before the fix (note that
netem's backlog > limit, netem stopped accepting packets):
qdisc netem 1: root refcnt 2 limit 1000 delay 100ms
Sent 2767766 bytes 1848 pkt (dropped 652, overlimits 0 requeues 0)
backlog 4294528236b 1155p requeues 0
qdisc tbf 10: parent 1:1 rate 50Mbit burst 1537b lat 50ms
Sent 2767766 bytes 1848 pkt (dropped 327, overlimits 7601 requeues 0)
backlog 0b 0p requeues 0
Statistics after the fix:
qdisc netem 1: root refcnt 2 limit 1000 delay 100ms
Sent 37766372 bytes 24974 pkt (dropped 9, overlimits 0 requeues 0)
backlog 0b 0p requeues 0
qdisc tbf 10: parent 1:1 rate 50Mbit burst 1537b lat 50ms
Sent 37766372 bytes 24974 pkt (dropped 327, overlimits 96017 requeues 0)
backlog 0b 0p requeues 0
tbf segments the GSO SKBs (tbf_segment) and updates the netem's 'qlen'.
The interface fully stops transferring packets and "locks". In this case,
the child qdisc and tfifo are empty, but 'qlen' indicates the tfifo is at
its limit and no more packets are accepted.
This patch adds a counter for the entries in the tfifo. Netem's 'qlen' is
only decreased when a packet is returned by its dequeue function, and not
during enqueuing into the child qdisc. External updates to 'qlen' are thus
accounted for and only the behavior of the backlog statistics changes. As
in other qdiscs, 'qlen' then keeps track of how many packets are held in
netem and all of its children. As before, sch->limit remains as the
maximum number of packets in the tfifo. The same applies to netem's
backlog statistics. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Prevent bad count for tracing_cpumask_write
If a large count is provided, it will trigger a warning in bitmap_parse_user.
Also check zero for it. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: caam - Fix the pointer passed to caam_qi_shutdown()
The type of the last parameter given to devm_add_action_or_reset() is
"struct caam_drv_private *", but in caam_qi_shutdown(), it is casted to
"struct device *".
Pass the correct parameter to devm_add_action_or_reset() so that the
resources are released as expected. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: release nexthop on device removal
The CI is hitting some aperiodic hangup at device removal time in the
pmtu.sh self-test:
unregister_netdevice: waiting for veth_A-R1 to become free. Usage count = 6
ref_tracker: veth_A-R1@ffff888013df15d8 has 1/5 users at
dst_init+0x84/0x4a0
dst_alloc+0x97/0x150
ip6_dst_alloc+0x23/0x90
ip6_rt_pcpu_alloc+0x1e6/0x520
ip6_pol_route+0x56f/0x840
fib6_rule_lookup+0x334/0x630
ip6_route_output_flags+0x259/0x480
ip6_dst_lookup_tail.constprop.0+0x5c2/0x940
ip6_dst_lookup_flow+0x88/0x190
udp_tunnel6_dst_lookup+0x2a7/0x4c0
vxlan_xmit_one+0xbde/0x4a50 [vxlan]
vxlan_xmit+0x9ad/0xf20 [vxlan]
dev_hard_start_xmit+0x10e/0x360
__dev_queue_xmit+0xf95/0x18c0
arp_solicit+0x4a2/0xe00
neigh_probe+0xaa/0xf0
While the first suspect is the dst_cache, explicitly tracking the dst
owing the last device reference via probes proved such dst is held by
the nexthop in the originating fib6_info.
Similar to commit f5b51fe804ec ("ipv6: route: purge exception on
removal"), we need to explicitly release the originating fib info when
disconnecting a to-be-removed device from a live ipv6 dst: move the
fib6_info cleanup into ip6_dst_ifdown().
Tested running:
./pmtu.sh cleanup_ipv6_exception
in a tight loop for more than 400 iterations with no spat, running an
unpatched kernel I observed a splat every ~10 iterations. |
| In the Linux kernel, the following vulnerability has been resolved:
mfd: intel_soc_pmic_bxtwc: Use IRQ domain for TMU device
While design wise the idea of converting the driver to use
the hierarchy of the IRQ chips is correct, the implementation
has (inherited) flaws. This was unveiled when platform_get_irq()
had started WARN() on IRQ 0 that is supposed to be a Linux
IRQ number (also known as vIRQ).
Rework the driver to respect IRQ domain when creating each MFD
device separately, as the domain is not the same for all of them. |
| In the Linux kernel, the following vulnerability has been resolved:
mfd: intel_soc_pmic_bxtwc: Use IRQ domain for PMIC devices
While design wise the idea of converting the driver to use
the hierarchy of the IRQ chips is correct, the implementation
has (inherited) flaws. This was unveiled when platform_get_irq()
had started WARN() on IRQ 0 that is supposed to be a Linux
IRQ number (also known as vIRQ).
Rework the driver to respect IRQ domain when creating each MFD
device separately, as the domain is not the same for all of them. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: protect link down work from execute after lgr freed
link down work may be scheduled before lgr freed but execute
after lgr freed, which may result in crash. So it is need to
hold a reference before shedule link down work, and put the
reference after work executed or canceled.
The relevant crash call stack as follows:
list_del corruption. prev->next should be ffffb638c9c0fe20,
but was 0000000000000000
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:51!
invalid opcode: 0000 [#1] SMP NOPTI
CPU: 6 PID: 978112 Comm: kworker/6:119 Kdump: loaded Tainted: G #1
Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 2221b89 04/01/2014
Workqueue: events smc_link_down_work [smc]
RIP: 0010:__list_del_entry_valid.cold+0x31/0x47
RSP: 0018:ffffb638c9c0fdd8 EFLAGS: 00010086
RAX: 0000000000000054 RBX: ffff942fb75e5128 RCX: 0000000000000000
RDX: ffff943520930aa0 RSI: ffff94352091fc80 RDI: ffff94352091fc80
RBP: 0000000000000000 R08: 0000000000000000 R09: ffffb638c9c0fc38
R10: ffffb638c9c0fc30 R11: ffffffffa015eb28 R12: 0000000000000002
R13: ffffb638c9c0fe20 R14: 0000000000000001 R15: ffff942f9cd051c0
FS: 0000000000000000(0000) GS:ffff943520900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f4f25214000 CR3: 000000025fbae004 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
rwsem_down_write_slowpath+0x17e/0x470
smc_link_down_work+0x3c/0x60 [smc]
process_one_work+0x1ac/0x350
worker_thread+0x49/0x2f0
? rescuer_thread+0x360/0x360
kthread+0x118/0x140
? __kthread_bind_mask+0x60/0x60
ret_from_fork+0x1f/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
net: mscc: ocelot: fix incorrect IFH SRC_PORT field in ocelot_ifh_set_basic()
Packets injected by the CPU should have a SRC_PORT field equal to the
CPU port module index in the Analyzer block (ocelot->num_phys_ports).
The blamed commit copied the ocelot_ifh_set_basic() call incorrectly
from ocelot_xmit_common() in net/dsa/tag_ocelot.c. Instead of calling
with "x", it calls with BIT_ULL(x), but the field is not a port mask,
but rather a single port index.
[ side note: this is the technical debt of code duplication :( ]
The error used to be silent and doesn't appear to have other
user-visible manifestations, but with new changes in the packing
library, it now fails loudly as follows:
------------[ cut here ]------------
Cannot store 0x40 inside bits 46-43 - will truncate
sja1105 spi2.0: xmit timed out
WARNING: CPU: 1 PID: 102 at lib/packing.c:98 __pack+0x90/0x198
sja1105 spi2.0: timed out polling for tstamp
CPU: 1 UID: 0 PID: 102 Comm: felix_xmit
Tainted: G W N 6.13.0-rc1-00372-gf706b85d972d-dirty #2605
Call trace:
__pack+0x90/0x198 (P)
__pack+0x90/0x198 (L)
packing+0x78/0x98
ocelot_ifh_set_basic+0x260/0x368
ocelot_port_inject_frame+0xa8/0x250
felix_port_deferred_xmit+0x14c/0x258
kthread_worker_fn+0x134/0x350
kthread+0x114/0x138
The code path pertains to the ocelot switchdev driver and to the felix
secondary DSA tag protocol, ocelot-8021q. Here seen with ocelot-8021q.
The messenger (packing) is not really to blame, so fix the original
commit instead. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: check if iowq is killed before queuing
task work can be executed after the task has gone through io_uring
termination, whether it's the final task_work run or the fallback path.
In this case, task work will find ->io_wq being already killed and
null'ed, which is a problem if it then tries to forward the request to
io_queue_iowq(). Make io_queue_iowq() fail requests in this case.
Note that it also checks PF_KTHREAD, because the user can first close
a DEFER_TASKRUN ring and shortly after kill the task, in which case
->iowq check would race. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: handle otx2_mbox_get_rsp errors in otx2_dmac_flt.c
Add error pointer checks after calling otx2_mbox_get_rsp(). |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries: Fix dtl_access_lock to be a rw_semaphore
The dtl_access_lock needs to be a rw_sempahore, a sleeping lock, because
the code calls kmalloc() while holding it, which can sleep:
# echo 1 > /proc/powerpc/vcpudispatch_stats
BUG: sleeping function called from invalid context at include/linux/sched/mm.h:337
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 199, name: sh
preempt_count: 1, expected: 0
3 locks held by sh/199:
#0: c00000000a0743f8 (sb_writers#3){.+.+}-{0:0}, at: vfs_write+0x324/0x438
#1: c0000000028c7058 (dtl_enable_mutex){+.+.}-{3:3}, at: vcpudispatch_stats_write+0xd4/0x5f4
#2: c0000000028c70b8 (dtl_access_lock){+.+.}-{2:2}, at: vcpudispatch_stats_write+0x220/0x5f4
CPU: 0 PID: 199 Comm: sh Not tainted 6.10.0-rc4 #152
Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1202 0xf000005 of:SLOF,HEAD hv:linux,kvm pSeries
Call Trace:
dump_stack_lvl+0x130/0x148 (unreliable)
__might_resched+0x174/0x410
kmem_cache_alloc_noprof+0x340/0x3d0
alloc_dtl_buffers+0x124/0x1ac
vcpudispatch_stats_write+0x2a8/0x5f4
proc_reg_write+0xf4/0x150
vfs_write+0xfc/0x438
ksys_write+0x88/0x148
system_call_exception+0x1c4/0x5a0
system_call_common+0xf4/0x258 |
| In the Linux kernel, the following vulnerability has been resolved:
mfd: intel_soc_pmic_bxtwc: Use IRQ domain for USB Type-C device
While design wise the idea of converting the driver to use
the hierarchy of the IRQ chips is correct, the implementation
has (inherited) flaws. This was unveiled when platform_get_irq()
had started WARN() on IRQ 0 that is supposed to be a Linux
IRQ number (also known as vIRQ).
Rework the driver to respect IRQ domain when creating each MFD
device separately, as the domain is not the same for all of them. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: pcrypt - Call crypto layer directly when padata_do_parallel() return -EBUSY
Since commit 8f4f68e788c3 ("crypto: pcrypt - Fix hungtask for
PADATA_RESET"), the pcrypt encryption and decryption operations return
-EAGAIN when the CPU goes online or offline. In alg_test(), a WARN is
generated when pcrypt_aead_decrypt() or pcrypt_aead_encrypt() returns
-EAGAIN, the unnecessary panic will occur when panic_on_warn set 1.
Fix this issue by calling crypto layer directly without parallelization
in that case. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: hdmi: Avoid hang with debug registers when suspended
Trying to read /sys/kernel/debug/dri/1/hdmi1_regs
when the hdmi is disconnected results in a fatal system hang.
This is due to the pm suspend code disabling the dvp clock.
That is just a gate of the 108MHz clock in DVP_HT_RPI_MISC_CONFIG,
which results in accesses hanging AXI bus.
Protect against this. |