| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Use after free in Multimedia Class Scheduler Service (MMCSS) allows an authorized attacker to elevate privileges locally. |
| Double free in Windows Smart Card allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gem: Acquire references on GEM handles for framebuffers
A GEM handle can be released while the GEM buffer object is attached
to a DRM framebuffer. This leads to the release of the dma-buf backing
the buffer object, if any. [1] Trying to use the framebuffer in further
mode-setting operations leads to a segmentation fault. Most easily
happens with driver that use shadow planes for vmap-ing the dma-buf
during a page flip. An example is shown below.
[ 156.791968] ------------[ cut here ]------------
[ 156.796830] WARNING: CPU: 2 PID: 2255 at drivers/dma-buf/dma-buf.c:1527 dma_buf_vmap+0x224/0x430
[...]
[ 156.942028] RIP: 0010:dma_buf_vmap+0x224/0x430
[ 157.043420] Call Trace:
[ 157.045898] <TASK>
[ 157.048030] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.052436] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.056836] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.061253] ? drm_gem_shmem_vmap+0x74/0x710
[ 157.065567] ? dma_buf_vmap+0x224/0x430
[ 157.069446] ? __warn.cold+0x58/0xe4
[ 157.073061] ? dma_buf_vmap+0x224/0x430
[ 157.077111] ? report_bug+0x1dd/0x390
[ 157.080842] ? handle_bug+0x5e/0xa0
[ 157.084389] ? exc_invalid_op+0x14/0x50
[ 157.088291] ? asm_exc_invalid_op+0x16/0x20
[ 157.092548] ? dma_buf_vmap+0x224/0x430
[ 157.096663] ? dma_resv_get_singleton+0x6d/0x230
[ 157.101341] ? __pfx_dma_buf_vmap+0x10/0x10
[ 157.105588] ? __pfx_dma_resv_get_singleton+0x10/0x10
[ 157.110697] drm_gem_shmem_vmap+0x74/0x710
[ 157.114866] drm_gem_vmap+0xa9/0x1b0
[ 157.118763] drm_gem_vmap_unlocked+0x46/0xa0
[ 157.123086] drm_gem_fb_vmap+0xab/0x300
[ 157.126979] drm_atomic_helper_prepare_planes.part.0+0x487/0xb10
[ 157.133032] ? lockdep_init_map_type+0x19d/0x880
[ 157.137701] drm_atomic_helper_commit+0x13d/0x2e0
[ 157.142671] ? drm_atomic_nonblocking_commit+0xa0/0x180
[ 157.147988] drm_mode_atomic_ioctl+0x766/0xe40
[...]
[ 157.346424] ---[ end trace 0000000000000000 ]---
Acquiring GEM handles for the framebuffer's GEM buffer objects prevents
this from happening. The framebuffer's cleanup later puts the handle
references.
Commit 1a148af06000 ("drm/gem-shmem: Use dma_buf from GEM object
instance") triggers the segmentation fault easily by using the dma-buf
field more widely. The underlying issue with reference counting has
been present before.
v2:
- acquire the handle instead of the BO (Christian)
- fix comment style (Christian)
- drop the Fixes tag (Christian)
- rename err_ gotos
- add missing Link tag |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Refuse to evaluate a method if arguments are missing
As reported in [1], a platform firmware update that increased the number
of method parameters and forgot to update a least one of its callers,
caused ACPICA to crash due to use-after-free.
Since this a result of a clear AML issue that arguably cannot be fixed
up by the interpreter (it cannot produce missing data out of thin air),
address it by making ACPICA refuse to evaluate a method if the caller
attempts to pass fewer arguments than expected to it. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: pci-epf-test: Fix double free that causes kernel to oops
Fix a kernel oops found while testing the stm32_pcie Endpoint driver
with handling of PERST# deassertion:
During EP initialization, pci_epf_test_alloc_space() allocates all BARs,
which are further freed if epc_set_bar() fails (for instance, due to no
free inbound window).
However, when pci_epc_set_bar() fails, the error path:
pci_epc_set_bar() ->
pci_epf_free_space()
does not clear the previous assignment to epf_test->reg[bar].
Then, if the host reboots, the PERST# deassertion restarts the BAR
allocation sequence with the same allocation failure (no free inbound
window), creating a double free situation since epf_test->reg[bar] was
deallocated and is still non-NULL.
Thus, make sure that pci_epf_alloc_space() and pci_epf_free_space()
invocations are symmetric, and as such, set epf_test->reg[bar] to NULL
when memory is freed.
[kwilczynski: commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix double SIGFPE crash
Camm noticed that on parisc a SIGFPE exception will crash an application with
a second SIGFPE in the signal handler. Dave analyzed it, and it happens
because glibc uses a double-word floating-point store to atomically update
function descriptors. As a result of lazy binding, we hit a floating-point
store in fpe_func almost immediately.
When the T bit is set, an assist exception trap occurs when when the
co-processor encounters *any* floating-point instruction except for a double
store of register %fr0. The latter cancels all pending traps. Let's fix this
by clearing the Trap (T) bit in the FP status register before returning to the
signal handler in userspace.
The issue can be reproduced with this test program:
root@parisc:~# cat fpe.c
static void fpe_func(int sig, siginfo_t *i, void *v) {
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGFPE);
sigprocmask(SIG_UNBLOCK, &set, NULL);
printf("GOT signal %d with si_code %ld\n", sig, i->si_code);
}
int main() {
struct sigaction action = {
.sa_sigaction = fpe_func,
.sa_flags = SA_RESTART|SA_SIGINFO };
sigaction(SIGFPE, &action, 0);
feenableexcept(FE_OVERFLOW);
return printf("%lf\n",1.7976931348623158E308*1.7976931348623158E308);
}
root@parisc:~# gcc fpe.c -lm
root@parisc:~# ./a.out
Floating point exception
root@parisc:~# strace -f ./a.out
execve("./a.out", ["./a.out"], 0xf9ac7034 /* 20 vars */) = 0
getrlimit(RLIMIT_STACK, {rlim_cur=8192*1024, rlim_max=RLIM_INFINITY}) = 0
...
rt_sigaction(SIGFPE, {sa_handler=0x1110a, sa_mask=[], sa_flags=SA_RESTART|SA_SIGINFO}, NULL, 8) = 0
--- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0x1078f} ---
--- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0xf8f21237} ---
+++ killed by SIGFPE +++
Floating point exception |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Fix isochronous Ring Underrun/Overrun event handling
The TRB pointer of these events points at enqueue at the time of error
occurrence on xHCI 1.1+ HCs or it's NULL on older ones. By the time we
are handling the event, a new TD may be queued at this ring position.
I can trigger this race by rising interrupt moderation to increase IRQ
handling delay. Similar delay may occur naturally due to system load.
If this ever happens after a Missed Service Error, missed TDs will be
skipped and the new TD processed as if it matched the event. It could
be given back prematurely, risking data loss or buffer UAF by the xHC.
Don't complete TDs on xrun events and don't warn if queued TDs don't
match the event's TRB pointer, which can be NULL or a link/no-op TRB.
Don't warn if there are no queued TDs at all.
Now that it's safe, also handle xrun events if the skip flag is clear.
This ensures completion of any TD stuck in 'error mid TD' state right
before the xrun event, which could happen if a driver submits a finite
number of URBs to a buggy HC and then an error occurs on the last TD. |
| In the Linux kernel, the following vulnerability has been resolved:
HSI: ssi_protocol: Fix use after free vulnerability in ssi_protocol Driver Due to Race Condition
In the ssi_protocol_probe() function, &ssi->work is bound with
ssip_xmit_work(), In ssip_pn_setup(), the ssip_pn_xmit() function
within the ssip_pn_ops structure is capable of starting the
work.
If we remove the module which will call ssi_protocol_remove()
to make a cleanup, it will free ssi through kfree(ssi),
while the work mentioned above will be used. The sequence
of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| ssip_xmit_work
ssi_protocol_remove |
kfree(ssi); |
| struct hsi_client *cl = ssi->cl;
| // use ssi
Fix it by ensuring that the work is canceled before proceeding
with the cleanup in ssi_protocol_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: ignore xattrs past end
Once inside 'ext4_xattr_inode_dec_ref_all' we should
ignore xattrs entries past the 'end' entry.
This fixes the following KASAN reported issue:
==================================================================
BUG: KASAN: slab-use-after-free in ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
Read of size 4 at addr ffff888012c120c4 by task repro/2065
CPU: 1 UID: 0 PID: 2065 Comm: repro Not tainted 6.13.0-rc2+ #11
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x1fd/0x300
? tcp_gro_dev_warn+0x260/0x260
? _printk+0xc0/0x100
? read_lock_is_recursive+0x10/0x10
? irq_work_queue+0x72/0xf0
? __virt_addr_valid+0x17b/0x4b0
print_address_description+0x78/0x390
print_report+0x107/0x1f0
? __virt_addr_valid+0x17b/0x4b0
? __virt_addr_valid+0x3ff/0x4b0
? __phys_addr+0xb5/0x160
? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
kasan_report+0xcc/0x100
? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
? ext4_xattr_delete_inode+0xd30/0xd30
? __ext4_journal_ensure_credits+0x5f0/0x5f0
? __ext4_journal_ensure_credits+0x2b/0x5f0
? inode_update_timestamps+0x410/0x410
ext4_xattr_delete_inode+0xb64/0xd30
? ext4_truncate+0xb70/0xdc0
? ext4_expand_extra_isize_ea+0x1d20/0x1d20
? __ext4_mark_inode_dirty+0x670/0x670
? ext4_journal_check_start+0x16f/0x240
? ext4_inode_is_fast_symlink+0x2f2/0x3a0
ext4_evict_inode+0xc8c/0xff0
? ext4_inode_is_fast_symlink+0x3a0/0x3a0
? do_raw_spin_unlock+0x53/0x8a0
? ext4_inode_is_fast_symlink+0x3a0/0x3a0
evict+0x4ac/0x950
? proc_nr_inodes+0x310/0x310
? trace_ext4_drop_inode+0xa2/0x220
? _raw_spin_unlock+0x1a/0x30
? iput+0x4cb/0x7e0
do_unlinkat+0x495/0x7c0
? try_break_deleg+0x120/0x120
? 0xffffffff81000000
? __check_object_size+0x15a/0x210
? strncpy_from_user+0x13e/0x250
? getname_flags+0x1dc/0x530
__x64_sys_unlinkat+0xc8/0xf0
do_syscall_64+0x65/0x110
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x434ffd
Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 8
RSP: 002b:00007ffc50fa7b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000107
RAX: ffffffffffffffda RBX: 00007ffc50fa7e18 RCX: 0000000000434ffd
RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000005
RBP: 00007ffc50fa7be0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
R13: 00007ffc50fa7e08 R14: 00000000004bbf30 R15: 0000000000000001
</TASK>
The buggy address belongs to the object at ffff888012c12000
which belongs to the cache filp of size 360
The buggy address is located 196 bytes inside of
freed 360-byte region [ffff888012c12000, ffff888012c12168)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x12c12
head: order:1 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0x40(head|node=0|zone=0)
page_type: f5(slab)
raw: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004
raw: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000
head: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004
head: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000
head: 0000000000000001 ffffea00004b0481 ffffffffffffffff 0000000000000000
head: 0000000000000002 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888012c11f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff888012c12000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
> ffff888012c12080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888012c12100: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc
ffff888012c12180: fc fc fc fc fc fc fc fc fc
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix slab-use-after-free Read in l2cap_send_cmd
After the hci sync command releases l2cap_conn, the hci receive data work
queue references the released l2cap_conn when sending to the upper layer.
Add hci dev lock to the hci receive data work queue to synchronize the two.
[1]
BUG: KASAN: slab-use-after-free in l2cap_send_cmd+0x187/0x8d0 net/bluetooth/l2cap_core.c:954
Read of size 8 at addr ffff8880271a4000 by task kworker/u9:2/5837
CPU: 0 UID: 0 PID: 5837 Comm: kworker/u9:2 Not tainted 6.13.0-rc5-syzkaller-00163-gab75170520d4 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: hci1 hci_rx_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
l2cap_build_cmd net/bluetooth/l2cap_core.c:2964 [inline]
l2cap_send_cmd+0x187/0x8d0 net/bluetooth/l2cap_core.c:954
l2cap_sig_send_rej net/bluetooth/l2cap_core.c:5502 [inline]
l2cap_sig_channel net/bluetooth/l2cap_core.c:5538 [inline]
l2cap_recv_frame+0x221f/0x10db0 net/bluetooth/l2cap_core.c:6817
hci_acldata_packet net/bluetooth/hci_core.c:3797 [inline]
hci_rx_work+0x508/0xdb0 net/bluetooth/hci_core.c:4040
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 5837:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329
kmalloc_noprof include/linux/slab.h:901 [inline]
kzalloc_noprof include/linux/slab.h:1037 [inline]
l2cap_conn_add+0xa9/0x8e0 net/bluetooth/l2cap_core.c:6860
l2cap_connect_cfm+0x115/0x1090 net/bluetooth/l2cap_core.c:7239
hci_connect_cfm include/net/bluetooth/hci_core.h:2057 [inline]
hci_remote_features_evt+0x68e/0xac0 net/bluetooth/hci_event.c:3726
hci_event_func net/bluetooth/hci_event.c:7473 [inline]
hci_event_packet+0xac2/0x1540 net/bluetooth/hci_event.c:7525
hci_rx_work+0x3f3/0xdb0 net/bluetooth/hci_core.c:4035
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Freed by task 54:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2353 [inline]
slab_free mm/slub.c:4613 [inline]
kfree+0x196/0x430 mm/slub.c:4761
l2cap_connect_cfm+0xcc/0x1090 net/bluetooth/l2cap_core.c:7235
hci_connect_cfm include/net/bluetooth/hci_core.h:2057 [inline]
hci_conn_failed+0x287/0x400 net/bluetooth/hci_conn.c:1266
hci_abort_conn_sync+0x56c/0x11f0 net/bluetooth/hci_sync.c:5603
hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:332
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entr
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: allow exp not to be removed in nf_ct_find_expectation
Currently nf_conntrack_in() calling nf_ct_find_expectation() will
remove the exp from the hash table. However, in some scenario, we
expect the exp not to be removed when the created ct will not be
confirmed, like in OVS and TC conntrack in the following patches.
This patch allows exp not to be removed by setting IPS_CONFIRMED
in the status of the tmpl. |
| A maliciously crafted CATPART, STP, and MODEL file, when parsed in atf_dwg_consumer.dll, rose_x64_vc15.dll and libodxdll through Autodesk applications, can cause a use-after-free vulnerability. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. |
| A maliciously crafted MODEL file, when parsed in libodxdll through Autodesk applications, can cause a double free. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. |
| A maliciously crafted SLDPRT file in ASMkern228A.dll when parsed through Autodesk applications can be used in user-after-free vulnerability. This vulnerability, along with other vulnerabilities, could lead to code execution in the current process. |
| A maliciously crafted IGS file in tbb.dll when parsed through Autodesk AutoCAD can be used in user-after-free vulnerability. This vulnerability, along with other vulnerabilities, could lead to code execution in the current process. |
| Use-after-free in the Disability Access APIs component. This vulnerability affects Firefox < 146.0.1. |
| NanoMQ MQTT Broker (NanoMQ) is an Edge Messaging Platform. Prior to version 0.24.2, there is a classical data racing issue about sub info list which could result in heap use after free crash. This issue has been patched in version 0.24.2. |
| FluidSynth is a software synthesizer based on the SoundFont 2 specifications. From versions 2.5.0 to before 2.5.2, a race condition during unloading of a DLS file can trigger a heap-based use-after-free. A concurrently running thread may be pending to unload a DLS file, leading to use of freed memory, if the synthesizer is being concurrently destroyed, or samples of the (unloaded) DLS file are concurrently used to synthesize audio. This issue has been patched in version 2.5.2. The problem will not occur, when explicitly unloading a DLS file (before synth destruction), provided that at the time of unloading, no samples of the respective file are used by active voices. The problem will not occur in versions of FluidSynth that have been compiled without native DLS support. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to trigger reads of stale data that can lead to kernel exceptions and write use-after-free.
The Use After Free common weakness enumeration was chosen as the stale data can include handles to resources in which the reference counts can become unbalanced. This can lead to the premature destruction of a resource while in use. |
| A flaw was found in libxslt where the attribute type, atype, flags are modified in a way that corrupts internal memory management. When XSLT functions, such as the key() process, result in tree fragments, this corruption prevents the proper cleanup of ID attributes. As a result, the system may access freed memory, causing crashes or enabling attackers to trigger heap corruption. |