| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix nilfs_empty_dir() misjudgment and long loop on I/O errors
The error handling in nilfs_empty_dir() when a directory folio/page read
fails is incorrect, as in the old ext2 implementation, and if the
folio/page cannot be read or nilfs_check_folio() fails, it will falsely
determine the directory as empty and corrupt the file system.
In addition, since nilfs_empty_dir() does not immediately return on a
failed folio/page read, but continues to loop, this can cause a long loop
with I/O if i_size of the directory's inode is also corrupted, causing the
log writer thread to wait and hang, as reported by syzbot.
Fix these issues by making nilfs_empty_dir() immediately return a false
value (0) if it fails to get a directory folio/page. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/memory-failure: fix handling of dissolved but not taken off from buddy pages
When I did memory failure tests recently, below panic occurs:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00
flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff)
raw: 06fffe0000000000 dead000000000100 dead000000000122 0000000000000000
raw: 0000000000000000 0000000000000009 00000000ffffffff 0000000000000000
page dumped because: VM_BUG_ON_PAGE(!PageBuddy(page))
------------[ cut here ]------------
kernel BUG at include/linux/page-flags.h:1009!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:__del_page_from_free_list+0x151/0x180
RSP: 0018:ffffa49c90437998 EFLAGS: 00000046
RAX: 0000000000000035 RBX: 0000000000000009 RCX: ffff8dd8dfd1c9c8
RDX: 0000000000000000 RSI: 0000000000000027 RDI: ffff8dd8dfd1c9c0
RBP: ffffd901233b8000 R08: ffffffffab5511f8 R09: 0000000000008c69
R10: 0000000000003c15 R11: ffffffffab5511f8 R12: ffff8dd8fffc0c80
R13: 0000000000000001 R14: ffff8dd8fffc0c80 R15: 0000000000000009
FS: 00007ff916304740(0000) GS:ffff8dd8dfd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055eae50124c8 CR3: 00000008479e0000 CR4: 00000000000006f0
Call Trace:
<TASK>
__rmqueue_pcplist+0x23b/0x520
get_page_from_freelist+0x26b/0xe40
__alloc_pages_noprof+0x113/0x1120
__folio_alloc_noprof+0x11/0xb0
alloc_buddy_hugetlb_folio.isra.0+0x5a/0x130
__alloc_fresh_hugetlb_folio+0xe7/0x140
alloc_pool_huge_folio+0x68/0x100
set_max_huge_pages+0x13d/0x340
hugetlb_sysctl_handler_common+0xe8/0x110
proc_sys_call_handler+0x194/0x280
vfs_write+0x387/0x550
ksys_write+0x64/0xe0
do_syscall_64+0xc2/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff916114887
RSP: 002b:00007ffec8a2fd78 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000055eae500e350 RCX: 00007ff916114887
RDX: 0000000000000004 RSI: 000055eae500e390 RDI: 0000000000000003
RBP: 000055eae50104c0 R08: 0000000000000000 R09: 000055eae50104c0
R10: 0000000000000077 R11: 0000000000000246 R12: 0000000000000004
R13: 0000000000000004 R14: 00007ff916216b80 R15: 00007ff916216a00
</TASK>
Modules linked in: mce_inject hwpoison_inject
---[ end trace 0000000000000000 ]---
And before the panic, there had an warning about bad page state:
BUG: Bad page state in process page-types pfn:8cee00
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8cee00
flags: 0x6fffe0000000000(node=1|zone=2|lastcpupid=0x7fff)
page_type: 0xffffff7f(buddy)
raw: 06fffe0000000000 ffffd901241c0008 ffffd901240f8008 0000000000000000
raw: 0000000000000000 0000000000000009 00000000ffffff7f 0000000000000000
page dumped because: nonzero mapcount
Modules linked in: mce_inject hwpoison_inject
CPU: 8 PID: 154211 Comm: page-types Not tainted 6.9.0-rc4-00499-g5544ec3178e2-dirty #22
Call Trace:
<TASK>
dump_stack_lvl+0x83/0xa0
bad_page+0x63/0xf0
free_unref_page+0x36e/0x5c0
unpoison_memory+0x50b/0x630
simple_attr_write_xsigned.constprop.0.isra.0+0xb3/0x110
debugfs_attr_write+0x42/0x60
full_proxy_write+0x5b/0x80
vfs_write+0xcd/0x550
ksys_write+0x64/0xe0
do_syscall_64+0xc2/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f189a514887
RSP: 002b:00007ffdcd899718 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f189a514887
RDX: 0000000000000009 RSI: 00007ffdcd899730 RDI: 0000000000000003
RBP: 00007ffdcd8997a0 R08: 0000000000000000 R09: 00007ffdcd8994b2
R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffdcda199a8
R13: 0000000000404af1 R14: 000000000040ad78 R15: 00007f189a7a5040
</TASK>
The root cause should be the below race:
memory_failure
try_memory_failure_hugetlb
me_huge_page
__page_handle_poison
dissolve_free_hugetlb_folio
drain_all_pages -- Buddy page can be isolated e.g. for compaction.
take_page_off_buddy -- Failed as page is not in the
---truncated--- |
| A vulnerability has been identified in Omnivise T3000 Application Server R9.2 (All versions), Omnivise T3000 R8.2 SP3 (All versions), Omnivise T3000 R8.2 SP4 (All versions). The affected system exposes the port of an internal application on the public network interface allowing an attacker to circumvent authentication and directly access the exposed application. |
| A vulnerability has been identified in Omnivise T3000 Application Server R9.2 (All versions), Omnivise T3000 Domain Controller R9.2 (All versions), Omnivise T3000 Product Data Management (PDM) R9.2 (All versions), Omnivise T3000 R8.2 SP3 (All versions), Omnivise T3000 R8.2 SP4 (All versions), Omnivise T3000 Terminal Server R9.2 (All versions), Omnivise T3000 Thin Client R9.2 (All versions), Omnivise T3000 Whitelisting Server R9.2 (All versions). The affected application regularly executes user modifiable code as a privileged user. This could allow a local authenticated attacker to execute arbitrary code with elevated privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_re: avoid shift undefined behavior in bnxt_qplib_alloc_init_hwq
Undefined behavior is triggered when bnxt_qplib_alloc_init_hwq is called
with hwq_attr->aux_depth != 0 and hwq_attr->aux_stride == 0.
In that case, "roundup_pow_of_two(hwq_attr->aux_stride)" gets called.
roundup_pow_of_two is documented as undefined for 0.
Fix it in the one caller that had this combination.
The undefined behavior was detected by UBSAN:
UBSAN: shift-out-of-bounds in ./include/linux/log2.h:57:13
shift exponent 64 is too large for 64-bit type 'long unsigned int'
CPU: 24 PID: 1075 Comm: (udev-worker) Not tainted 6.9.0-rc6+ #4
Hardware name: Abacus electric, s.r.o. - servis@abacus.cz Super Server/H12SSW-iN, BIOS 2.7 10/25/2023
Call Trace:
<TASK>
dump_stack_lvl+0x5d/0x80
ubsan_epilogue+0x5/0x30
__ubsan_handle_shift_out_of_bounds.cold+0x61/0xec
__roundup_pow_of_two+0x25/0x35 [bnxt_re]
bnxt_qplib_alloc_init_hwq+0xa1/0x470 [bnxt_re]
bnxt_qplib_create_qp+0x19e/0x840 [bnxt_re]
bnxt_re_create_qp+0x9b1/0xcd0 [bnxt_re]
? srso_alias_return_thunk+0x5/0xfbef5
? srso_alias_return_thunk+0x5/0xfbef5
? __kmalloc+0x1b6/0x4f0
? create_qp.part.0+0x128/0x1c0 [ib_core]
? __pfx_bnxt_re_create_qp+0x10/0x10 [bnxt_re]
create_qp.part.0+0x128/0x1c0 [ib_core]
ib_create_qp_kernel+0x50/0xd0 [ib_core]
create_mad_qp+0x8e/0xe0 [ib_core]
? __pfx_qp_event_handler+0x10/0x10 [ib_core]
ib_mad_init_device+0x2be/0x680 [ib_core]
add_client_context+0x10d/0x1a0 [ib_core]
enable_device_and_get+0xe0/0x1d0 [ib_core]
ib_register_device+0x53c/0x630 [ib_core]
? srso_alias_return_thunk+0x5/0xfbef5
bnxt_re_probe+0xbd8/0xe50 [bnxt_re]
? __pfx_bnxt_re_probe+0x10/0x10 [bnxt_re]
auxiliary_bus_probe+0x49/0x80
? driver_sysfs_add+0x57/0xc0
really_probe+0xde/0x340
? pm_runtime_barrier+0x54/0x90
? __pfx___driver_attach+0x10/0x10
__driver_probe_device+0x78/0x110
driver_probe_device+0x1f/0xa0
__driver_attach+0xba/0x1c0
bus_for_each_dev+0x8f/0xe0
bus_add_driver+0x146/0x220
driver_register+0x72/0xd0
__auxiliary_driver_register+0x6e/0xd0
? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re]
bnxt_re_mod_init+0x3e/0xff0 [bnxt_re]
? __pfx_bnxt_re_mod_init+0x10/0x10 [bnxt_re]
do_one_initcall+0x5b/0x310
do_init_module+0x90/0x250
init_module_from_file+0x86/0xc0
idempotent_init_module+0x121/0x2b0
__x64_sys_finit_module+0x5e/0xb0
do_syscall_64+0x82/0x160
? srso_alias_return_thunk+0x5/0xfbef5
? syscall_exit_to_user_mode_prepare+0x149/0x170
? srso_alias_return_thunk+0x5/0xfbef5
? syscall_exit_to_user_mode+0x75/0x230
? srso_alias_return_thunk+0x5/0xfbef5
? do_syscall_64+0x8e/0x160
? srso_alias_return_thunk+0x5/0xfbef5
? __count_memcg_events+0x69/0x100
? srso_alias_return_thunk+0x5/0xfbef5
? count_memcg_events.constprop.0+0x1a/0x30
? srso_alias_return_thunk+0x5/0xfbef5
? handle_mm_fault+0x1f0/0x300
? srso_alias_return_thunk+0x5/0xfbef5
? do_user_addr_fault+0x34e/0x640
? srso_alias_return_thunk+0x5/0xfbef5
? srso_alias_return_thunk+0x5/0xfbef5
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f4e5132821d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e3 db 0c 00 f7 d8 64 89 01 48
RSP: 002b:00007ffca9c906a8 EFLAGS: 00000246 ORIG_RAX: 0000000000000139
RAX: ffffffffffffffda RBX: 0000563ec8a8f130 RCX: 00007f4e5132821d
RDX: 0000000000000000 RSI: 00007f4e518fa07d RDI: 000000000000003b
RBP: 00007ffca9c90760 R08: 00007f4e513f6b20 R09: 00007ffca9c906f0
R10: 0000563ec8a8faa0 R11: 0000000000000246 R12: 00007f4e518fa07d
R13: 0000000000020000 R14: 0000563ec8409e90 R15: 0000563ec8a8fa60
</TASK>
---[ end trace ]--- |
| Vulnerability in core of Apache HTTP Server 2.4.59 and earlier are vulnerably to information disclosure, SSRF or local script execution via backend applications whose response headers are malicious or exploitable.
Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential kernel bug due to lack of writeback flag waiting
Destructive writes to a block device on which nilfs2 is mounted can cause
a kernel bug in the folio/page writeback start routine or writeback end
routine (__folio_start_writeback in the log below):
kernel BUG at mm/page-writeback.c:3070!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
...
RIP: 0010:__folio_start_writeback+0xbaa/0x10e0
Code: 25 ff 0f 00 00 0f 84 18 01 00 00 e8 40 ca c6 ff e9 17 f6 ff ff
e8 36 ca c6 ff 4c 89 f7 48 c7 c6 80 c0 12 84 e8 e7 b3 0f 00 90 <0f>
0b e8 1f ca c6 ff 4c 89 f7 48 c7 c6 a0 c6 12 84 e8 d0 b3 0f 00
...
Call Trace:
<TASK>
nilfs_segctor_do_construct+0x4654/0x69d0 [nilfs2]
nilfs_segctor_construct+0x181/0x6b0 [nilfs2]
nilfs_segctor_thread+0x548/0x11c0 [nilfs2]
kthread+0x2f0/0x390
ret_from_fork+0x4b/0x80
ret_from_fork_asm+0x1a/0x30
</TASK>
This is because when the log writer starts a writeback for segment summary
blocks or a super root block that use the backing device's page cache, it
does not wait for the ongoing folio/page writeback, resulting in an
inconsistent writeback state.
Fix this issue by waiting for ongoing writebacks when putting
folios/pages on the backing device into writeback state. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Skip on writeback when it's not applicable
[WHY]
dynamic memory safety error detector (KASAN) catches and generates error
messages "BUG: KASAN: slab-out-of-bounds" as writeback connector does not
support certain features which are not initialized.
[HOW]
Skip them when connector type is DRM_MODE_CONNECTOR_WRITEBACK. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: taprio: extend minimum interval restriction to entire cycle too
It is possible for syzbot to side-step the restriction imposed by the
blamed commit in the Fixes: tag, because the taprio UAPI permits a
cycle-time different from (and potentially shorter than) the sum of
entry intervals.
We need one more restriction, which is that the cycle time itself must
be larger than N * ETH_ZLEN bit times, where N is the number of schedule
entries. This restriction needs to apply regardless of whether the cycle
time came from the user or was the implicit, auto-calculated value, so
we move the existing "cycle == 0" check outside the "if "(!new->cycle_time)"
branch. This way covers both conditions and scenarios.
Add a selftest which illustrates the issue triggered by syzbot. |
| Invalid Accept-Encoding header can cause Apache Traffic Server to fail cache lookup and force forwarding requests.
This issue affects Apache Traffic Server: from 8.0.0 through 8.1.10, from 9.0.0 through 9.2.4.
Users are recommended to upgrade to version 8.1.11 or 9.2.5, which fixes the issue. |
| printer_write in drivers/usb/gadget/function/f_printer.c in the Linux kernel through 6.7.4 does not properly call usb_ep_queue, which might allow attackers to cause a denial of service or have unspecified other impact. |
| Vulnerability in the MySQL Connectors product of Oracle MySQL (component: Connector/ODBC). Supported versions that are affected are 9.0.0 and prior. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise MySQL Connectors. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of MySQL Connectors accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of MySQL Connectors. CVSS 3.1 Base Score 6.5 (Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:L). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Telemetry). Supported versions that are affected are 8.4.2 and prior and 9.0.1 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized read access to a subset of MySQL Server accessible data. CVSS 3.1 Base Score 2.2 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:L/I:N/A:N). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Telemetry). Supported versions that are affected are 8.4.2 and prior and 9.0.1 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized read access to a subset of MySQL Server accessible data. CVSS 3.1 Base Score 2.2 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:L/I:N/A:N). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.39 and prior, 8.4.2 and prior and 9.0.1 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: InnoDB). Supported versions that are affected are 8.0.39 and prior, 8.4.2 and prior and 9.0.1 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Group Replication GCS). Supported versions that are affected are 8.0.39 and prior, 8.4.2 and prior and 9.0.1 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of MySQL Server. CVSS 3.1 Base Score 2.2 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:L). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: InnoDB). Supported versions that are affected are 8.0.39 and prior, 8.4.2 and prior and 9.0.1 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u421, 8u421-perf, 11.0.24, 17.0.12, 21.0.4, 23; Oracle GraalVM for JDK: 17.0.12, 21.0.4, 23; Oracle GraalVM Enterprise Edition: 20.3.15 and 21.3.11. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data as well as unauthorized read access to a subset of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 4.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:L/A:N). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Components Services). Supported versions that are affected are 8.4.2 and prior and 9.0.1 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of MySQL Server. CVSS 3.1 Base Score 2.2 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:N/S:U/C:N/I:N/A:L). |