| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/dbgfs: protect targets destructions with kdamond_lock
DAMON debugfs interface iterates current monitoring targets in
'dbgfs_target_ids_read()' while holding the corresponding
'kdamond_lock'. However, it also destructs the monitoring targets in
'dbgfs_before_terminate()' without holding the lock. This can result in
a use_after_free bug. This commit avoids the race by protecting the
destruction with the corresponding 'kdamond_lock'. |
| In the Linux kernel, the following vulnerability has been resolved:
habanalabs/gaudi: Fix a potential use after free in gaudi_memset_device_memory
Our code analyzer reported a uaf.
In gaudi_memset_device_memory, cb is get via hl_cb_kernel_create()
with 2 refcount.
If hl_cs_allocate_job() failed, the execution runs into release_cb
branch. One ref of cb is dropped by hl_cb_put(cb) and could be freed
if other thread also drops one ref. Then cb is used by cb->id later,
which is a potential uaf.
My patch add a variable 'id' to accept the value of cb->id before the
hl_cb_put(cb) is called, to avoid the potential uaf. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Clear all QP fields if creation failed
rxe_qp_do_cleanup() relies on valid pointer values in QP for the properly
created ones, but in case rxe_qp_from_init() failed it was filled with
garbage and caused tot the following error.
refcount_t: underflow; use-after-free.
WARNING: CPU: 1 PID: 12560 at lib/refcount.c:28 refcount_warn_saturate+0x1d1/0x1e0 lib/refcount.c:28
Modules linked in:
CPU: 1 PID: 12560 Comm: syz-executor.4 Not tainted 5.12.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:refcount_warn_saturate+0x1d1/0x1e0 lib/refcount.c:28
Code: e9 db fe ff ff 48 89 df e8 2c c2 ea fd e9 8a fe ff ff e8 72 6a a7 fd 48 c7 c7 e0 b2 c1 89 c6 05 dc 3a e6 09 01 e8 ee 74 fb 04 <0f> 0b e9 af fe ff ff 0f 1f 84 00 00 00 00 00 41 56 41 55 41 54 55
RSP: 0018:ffffc900097ceba8 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000040000 RSI: ffffffff815bb075 RDI: fffff520012f9d67
RBP: 0000000000000003 R08: 0000000000000000 R09: 0000000000000000
R10: ffffffff815b4eae R11: 0000000000000000 R12: ffff8880322a4800
R13: ffff8880322a4940 R14: ffff888033044e00 R15: 0000000000000000
FS: 00007f6eb2be3700(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fdbe5d41000 CR3: 000000001d181000 CR4: 00000000001506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
__refcount_sub_and_test include/linux/refcount.h:283 [inline]
__refcount_dec_and_test include/linux/refcount.h:315 [inline]
refcount_dec_and_test include/linux/refcount.h:333 [inline]
kref_put include/linux/kref.h:64 [inline]
rxe_qp_do_cleanup+0x96f/0xaf0 drivers/infiniband/sw/rxe/rxe_qp.c:805
execute_in_process_context+0x37/0x150 kernel/workqueue.c:3327
rxe_elem_release+0x9f/0x180 drivers/infiniband/sw/rxe/rxe_pool.c:391
kref_put include/linux/kref.h:65 [inline]
rxe_create_qp+0x2cd/0x310 drivers/infiniband/sw/rxe/rxe_verbs.c:425
_ib_create_qp drivers/infiniband/core/core_priv.h:331 [inline]
ib_create_named_qp+0x2ad/0x1370 drivers/infiniband/core/verbs.c:1231
ib_create_qp include/rdma/ib_verbs.h:3644 [inline]
create_mad_qp+0x177/0x2d0 drivers/infiniband/core/mad.c:2920
ib_mad_port_open drivers/infiniband/core/mad.c:3001 [inline]
ib_mad_init_device+0xd6f/0x1400 drivers/infiniband/core/mad.c:3092
add_client_context+0x405/0x5e0 drivers/infiniband/core/device.c:717
enable_device_and_get+0x1cd/0x3b0 drivers/infiniband/core/device.c:1331
ib_register_device drivers/infiniband/core/device.c:1413 [inline]
ib_register_device+0x7c7/0xa50 drivers/infiniband/core/device.c:1365
rxe_register_device+0x3d5/0x4a0 drivers/infiniband/sw/rxe/rxe_verbs.c:1147
rxe_add+0x12fe/0x16d0 drivers/infiniband/sw/rxe/rxe.c:247
rxe_net_add+0x8c/0xe0 drivers/infiniband/sw/rxe/rxe_net.c:503
rxe_newlink drivers/infiniband/sw/rxe/rxe.c:269 [inline]
rxe_newlink+0xb7/0xe0 drivers/infiniband/sw/rxe/rxe.c:250
nldev_newlink+0x30e/0x550 drivers/infiniband/core/nldev.c:1555
rdma_nl_rcv_msg+0x36d/0x690 drivers/infiniband/core/netlink.c:195
rdma_nl_rcv_skb drivers/infiniband/core/netlink.c:239 [inline]
rdma_nl_rcv+0x2ee/0x430 drivers/infiniband/core/netlink.c:259
netlink_unicast_kernel net/netlink/af_netlink.c:1312 [inline]
netlink_unicast+0x533/0x7d0 net/netlink/af_netlink.c:1338
netlink_sendmsg+0x856/0xd90 net/netlink/af_netlink.c:1927
sock_sendmsg_nosec net/socket.c:654 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:674
____sys_sendmsg+0x6e8/0x810 net/socket.c:2350
___sys_sendmsg+0xf3/0x170 net/socket.c:2404
__sys_sendmsg+0xe5/0x1b0 net/socket.c:2433
do_syscall_64+0x3a/0xb0 arch/x86/entry/common.c:47
entry_SYSCALL_64_after_hwframe+0
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/nfc: fix use-after-free llcp_sock_bind/connect
Commits 8a4cd82d ("nfc: fix refcount leak in llcp_sock_connect()")
and c33b1cc62 ("nfc: fix refcount leak in llcp_sock_bind()")
fixed a refcount leak bug in bind/connect but introduced a
use-after-free if the same local is assigned to 2 different sockets.
This can be triggered by the following simple program:
int sock1 = socket( AF_NFC, SOCK_STREAM, NFC_SOCKPROTO_LLCP );
int sock2 = socket( AF_NFC, SOCK_STREAM, NFC_SOCKPROTO_LLCP );
memset( &addr, 0, sizeof(struct sockaddr_nfc_llcp) );
addr.sa_family = AF_NFC;
addr.nfc_protocol = NFC_PROTO_NFC_DEP;
bind( sock1, (struct sockaddr*) &addr, sizeof(struct sockaddr_nfc_llcp) )
bind( sock2, (struct sockaddr*) &addr, sizeof(struct sockaddr_nfc_llcp) )
close(sock1);
close(sock2);
Fix this by assigning NULL to llcp_sock->local after calling
nfc_llcp_local_put.
This addresses CVE-2021-23134. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: bridge/panel: Cleanup connector on bridge detach
If we don't call drm_connector_cleanup() manually in
panel_bridge_detach(), the connector will be cleaned up with the other
DRM objects in the call to drm_mode_config_cleanup(). However, since our
drm_connector is devm-allocated, by the time drm_mode_config_cleanup()
will be called, our connector will be long gone. Therefore, the
connector must be cleaned up when the bridge is detached to avoid
use-after-free conditions.
v2: Cleanup connector only if it was created
v3: Add FIXME
v4: (Use connector->dev) directly in if() block |
| In the Linux kernel, the following vulnerability has been resolved:
regmap: set debugfs_name to NULL after it is freed
There is a upstream commit cffa4b2122f5("regmap:debugfs:
Fix a memory leak when calling regmap_attach_dev") that
adds a if condition when create name for debugfs_name.
With below function invoking logical, debugfs_name is
freed in regmap_debugfs_exit(), but it is not created again
because of the if condition introduced by above commit.
regmap_reinit_cache()
regmap_debugfs_exit()
...
regmap_debugfs_init()
So, set debugfs_name to NULL after it is freed. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: spi-zynqmp-gqspi: fix use-after-free in zynqmp_qspi_exec_op
When handling op->addr, it is using the buffer "tmpbuf" which has been
freed. This will trigger a use-after-free KASAN warning. Let's use
temporary variables to store op->addr.val and op->cmd.opcode to fix
this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rtrs-clt: destroy sysfs after removing session from active list
A session can be removed dynamically by sysfs interface "remove_path" that
eventually calls rtrs_clt_remove_path_from_sysfs function. The current
rtrs_clt_remove_path_from_sysfs first removes the sysfs interfaces and
frees sess->stats object. Second it removes the session from the active
list.
Therefore some functions could access non-connected session and access the
freed sess->stats object even-if they check the session status before
accessing the session.
For instance rtrs_clt_request and get_next_path_min_inflight check the
session status and try to send IO to the session. The session status
could be changed when they are trying to send IO but they could not catch
the change and update the statistics information in sess->stats object,
and generate use-after-free problem.
(see: "RDMA/rtrs-clt: Check state of the rtrs_clt_sess before reading its
stats")
This patch changes the rtrs_clt_remove_path_from_sysfs to remove the
session from the active session list and then destroy the sysfs
interfaces.
Each function still should check the session status because closing or
error recovery paths can change the status. |
| In the Linux kernel, the following vulnerability has been resolved:
ath10k: Fix a use after free in ath10k_htc_send_bundle
In ath10k_htc_send_bundle, the bundle_skb could be freed by
dev_kfree_skb_any(bundle_skb). But the bundle_skb is used later
by bundle_skb->len.
As skb_len = bundle_skb->len, my patch replaces bundle_skb->len to
skb_len after the bundle_skb was freed. |
| In the Linux kernel, the following vulnerability has been resolved:
net:emac/emac-mac: Fix a use after free in emac_mac_tx_buf_send
In emac_mac_tx_buf_send, it calls emac_tx_fill_tpd(..,skb,..).
If some error happens in emac_tx_fill_tpd(), the skb will be freed via
dev_kfree_skb(skb) in error branch of emac_tx_fill_tpd().
But the freed skb is still used via skb->len by netdev_sent_queue(,skb->len).
As i observed that emac_tx_fill_tpd() haven't modified the value of skb->len,
thus my patch assigns skb->len to 'len' before the possible free and
use 'len' instead of skb->len later. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix a use after free in siw_alloc_mr
Our code analyzer reported a UAF.
In siw_alloc_mr(), it calls siw_mr_add_mem(mr,..). In the implementation of
siw_mr_add_mem(), mem is assigned to mr->mem and then mem is freed via
kfree(mem) if xa_alloc_cyclic() failed. Here, mr->mem still point to a
freed object. After, the execution continue up to the err_out branch of
siw_alloc_mr, and the freed mr->mem is used in siw_mr_drop_mem(mr).
My patch moves "mr->mem = mem" behind the if (xa_alloc_cyclic(..)<0) {}
section, to avoid the uaf. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: memcontrol: slab: fix obtain a reference to a freeing memcg
Patch series "Use obj_cgroup APIs to charge kmem pages", v5.
Since Roman's series "The new cgroup slab memory controller" applied.
All slab objects are charged with the new APIs of obj_cgroup. The new
APIs introduce a struct obj_cgroup to charge slab objects. It prevents
long-living objects from pinning the original memory cgroup in the
memory. But there are still some corner objects (e.g. allocations
larger than order-1 page on SLUB) which are not charged with the new
APIs. Those objects (include the pages which are allocated from buddy
allocator directly) are charged as kmem pages which still hold a
reference to the memory cgroup.
E.g. We know that the kernel stack is charged as kmem pages because the
size of the kernel stack can be greater than 2 pages (e.g. 16KB on
x86_64 or arm64). If we create a thread (suppose the thread stack is
charged to memory cgroup A) and then move it from memory cgroup A to
memory cgroup B. Because the kernel stack of the thread hold a
reference to the memory cgroup A. The thread can pin the memory cgroup
A in the memory even if we remove the cgroup A. If we want to see this
scenario by using the following script. We can see that the system has
added 500 dying cgroups (This is not a real world issue, just a script
to show that the large kmallocs are charged as kmem pages which can pin
the memory cgroup in the memory).
#!/bin/bash
cat /proc/cgroups | grep memory
cd /sys/fs/cgroup/memory
echo 1 > memory.move_charge_at_immigrate
for i in range{1..500}
do
mkdir kmem_test
echo $$ > kmem_test/cgroup.procs
sleep 3600 &
echo $$ > cgroup.procs
echo `cat kmem_test/cgroup.procs` > cgroup.procs
rmdir kmem_test
done
cat /proc/cgroups | grep memory
This patchset aims to make those kmem pages to drop the reference to
memory cgroup by using the APIs of obj_cgroup. Finally, we can see that
the number of the dying cgroups will not increase if we run the above test
script.
This patch (of 7):
The rcu_read_lock/unlock only can guarantee that the memcg will not be
freed, but it cannot guarantee the success of css_get (which is in the
refill_stock when cached memcg changed) to memcg.
rcu_read_lock()
memcg = obj_cgroup_memcg(old)
__memcg_kmem_uncharge(memcg)
refill_stock(memcg)
if (stock->cached != memcg)
// css_get can change the ref counter from 0 back to 1.
css_get(&memcg->css)
rcu_read_unlock()
This fix is very like the commit:
eefbfa7fd678 ("mm: memcg/slab: fix use after free in obj_cgroup_charge")
Fix this by holding a reference to the memcg which is passed to the
__memcg_kmem_uncharge() before calling __memcg_kmem_uncharge(). |
| In the Linux kernel, the following vulnerability has been resolved:
ethernet:enic: Fix a use after free bug in enic_hard_start_xmit
In enic_hard_start_xmit, it calls enic_queue_wq_skb(). Inside
enic_queue_wq_skb, if some error happens, the skb will be freed
by dev_kfree_skb(skb). But the freed skb is still used in
skb_tx_timestamp(skb).
My patch makes enic_queue_wq_skb() return error and goto spin_unlock()
incase of error. The solution is provided by Govind.
See https://lkml.org/lkml/2021/4/30/961. |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix use-after-free in i40e_client_subtask()
Currently the call to i40e_client_del_instance frees the object
pf->cinst, however pf->cinst->lan_info is being accessed after
the free. Fix this by adding the missing return.
Addresses-Coverity: ("Read from pointer after free") |
| In the Linux kernel, the following vulnerability has been resolved:
userfaultfd: release page in error path to avoid BUG_ON
Consider the following sequence of events:
1. Userspace issues a UFFD ioctl, which ends up calling into
shmem_mfill_atomic_pte(). We successfully account the blocks, we
shmem_alloc_page(), but then the copy_from_user() fails. We return
-ENOENT. We don't release the page we allocated.
2. Our caller detects this error code, tries the copy_from_user() after
dropping the mmap_lock, and retries, calling back into
shmem_mfill_atomic_pte().
3. Meanwhile, let's say another process filled up the tmpfs being used.
4. So shmem_mfill_atomic_pte() fails to account blocks this time, and
immediately returns - without releasing the page.
This triggers a BUG_ON in our caller, which asserts that the page
should always be consumed, unless -ENOENT is returned.
To fix this, detect if we have such a "dangling" page when accounting
fails, and if so, release it before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: gadget: Free gadget structure only after freeing endpoints
As part of commit e81a7018d93a ("usb: dwc3: allocate gadget structure
dynamically") the dwc3_gadget_release() was added which will free
the dwc->gadget structure upon the device's removal when
usb_del_gadget_udc() is called in dwc3_gadget_exit().
However, simply freeing the gadget results a dangling pointer
situation: the endpoints created in dwc3_gadget_init_endpoints()
have their dep->endpoint.ep_list members chained off the list_head
anchored at dwc->gadget->ep_list. Thus when dwc->gadget is freed,
the first dwc3_ep in the list now has a dangling prev pointer and
likewise for the next pointer of the dwc3_ep at the tail of the list.
The dwc3_gadget_free_endpoints() that follows will result in a
use-after-free when it calls list_del().
This was caught by enabling KASAN and performing a driver unbind.
The recent commit 568262bf5492 ("usb: dwc3: core: Add shutdown
callback for dwc3") also exposes this as a panic during shutdown.
There are a few possibilities to fix this. One could be to perform
a list_del() of the gadget->ep_list itself which removes it from
the rest of the dwc3_ep chain.
Another approach is what this patch does, by splitting up the
usb_del_gadget_udc() call into its separate "del" and "put"
components. This allows dwc3_gadget_free_endpoints() to be
called before the gadget is finally freed with usb_put_gadget(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: qrtr: Avoid potential use after free in MHI send
It is possible that the MHI ul_callback will be invoked immediately
following the queueing of the skb for transmission, leading to the
callback decrementing the refcount of the associated sk and freeing the
skb.
As such the dereference of skb and the increment of the sk refcount must
happen before the skb is queued, to avoid the skb to be used after free
and potentially the sk to drop its last refcount.. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: core: Fix invalid error returning in mhi_queue
mhi_queue returns an error when the doorbell is not accessible in
the current state. This can happen when the device is in non M0
state, like M3, and needs to be waken-up prior ringing the DB. This
case is managed earlier by triggering an asynchronous M3 exit via
controller resume/suspend callbacks, that in turn will cause M0
transition and DB update.
So, since it's not an error but just delaying of doorbell update, there
is no reason to return an error.
This also fixes a use after free error for skb case, indeed a caller
queuing skb will try to free the skb if the queueing fails, but in
that case queueing has been done. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race between transaction aborts and fsyncs leading to use-after-free
There is a race between a task aborting a transaction during a commit,
a task doing an fsync and the transaction kthread, which leads to an
use-after-free of the log root tree. When this happens, it results in a
stack trace like the following:
BTRFS info (device dm-0): forced readonly
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
BTRFS: error (device dm-0) in cleanup_transaction:1958: errno=-5 IO failure
BTRFS warning (device dm-0): lost page write due to IO error on /dev/mapper/error-test (-5)
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0xa4e8 len 4096 err no 10
BTRFS error (device dm-0): error writing primary super block to device 1
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e000 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e008 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 261 rw 0,0 sector 0x12e010 len 4096 err no 10
BTRFS: error (device dm-0) in write_all_supers:4110: errno=-5 IO failure (1 errors while writing supers)
BTRFS: error (device dm-0) in btrfs_sync_log:3308: errno=-5 IO failure
general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b68: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
CPU: 2 PID: 2458471 Comm: fsstress Not tainted 5.12.0-rc5-btrfs-next-84 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
RIP: 0010:__mutex_lock+0x139/0xa40
Code: c0 74 19 (...)
RSP: 0018:ffff9f18830d7b00 EFLAGS: 00010202
RAX: 6b6b6b6b6b6b6b68 RBX: 0000000000000001 RCX: 0000000000000002
RDX: ffffffffb9c54d13 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff9f18830d7bc0 R08: 0000000000000000 R09: 0000000000000000
R10: ffff9f18830d7be0 R11: 0000000000000001 R12: ffff8c6cd199c040
R13: ffff8c6c95821358 R14: 00000000fffffffb R15: ffff8c6cbcf01358
FS: 00007fa9140c2b80(0000) GS:ffff8c6fac600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa913d52000 CR3: 000000013d2b4003 CR4: 0000000000370ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
? __btrfs_handle_fs_error+0xde/0x146 [btrfs]
? btrfs_sync_log+0x7c1/0xf20 [btrfs]
? btrfs_sync_log+0x7c1/0xf20 [btrfs]
btrfs_sync_log+0x7c1/0xf20 [btrfs]
btrfs_sync_file+0x40c/0x580 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fa9142a55c3
Code: 8b 15 09 (...)
RSP: 002b:00007fff26278d48 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 0000563c83cb4560 RCX: 00007fa9142a55c3
RDX: 00007fff26278cb0 RSI: 00007fff26278cb0 RDI: 0000000000000005
RBP: 0000000000000005 R08: 0000000000000001 R09: 00007fff26278d5c
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000340
R13: 00007fff26278de0 R14: 00007fff26278d96 R15: 0000563c83ca57c0
Modules linked in: btrfs dm_zero dm_snapshot dm_thin_pool (...)
---[ end trace ee2f1b19327d791d ]---
The steps that lead to this crash are the following:
1) We are at transaction N;
2) We have two tasks with a transaction handle attached to transaction N.
Task A and Task B. Task B is doing an fsync;
3) Task B is at btrfs_sync_log(), and has saved fs_info->log_root_tree
into a local variable named 'log_root_tree' at the top of
btrfs_sync_log(). Task B is about to call write_all_supers(), but
before that...
4) Task A calls btrfs_commit_transaction(), and after it sets the
transaction state to TRANS_STATE_COMMIT_START, an error happens before
it w
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix use-after-free in tw_timer_handler
A real world panic issue was found as follow in Linux 5.4.
BUG: unable to handle page fault for address: ffffde49a863de28
PGD 7e6fe62067 P4D 7e6fe62067 PUD 7e6fe63067 PMD f51e064067 PTE 0
RIP: 0010:tw_timer_handler+0x20/0x40
Call Trace:
<IRQ>
call_timer_fn+0x2b/0x120
run_timer_softirq+0x1ef/0x450
__do_softirq+0x10d/0x2b8
irq_exit+0xc7/0xd0
smp_apic_timer_interrupt+0x68/0x120
apic_timer_interrupt+0xf/0x20
This issue was also reported since 2017 in the thread [1],
unfortunately, the issue was still can be reproduced after fixing
DCCP.
The ipv4_mib_exit_net is called before tcp_sk_exit_batch when a net
namespace is destroyed since tcp_sk_ops is registered befrore
ipv4_mib_ops, which means tcp_sk_ops is in the front of ipv4_mib_ops
in the list of pernet_list. There will be a use-after-free on
net->mib.net_statistics in tw_timer_handler after ipv4_mib_exit_net
if there are some inflight time-wait timers.
This bug is not introduced by commit f2bf415cfed7 ("mib: add net to
NET_ADD_STATS_BH") since the net_statistics is a global variable
instead of dynamic allocation and freeing. Actually, commit
61a7e26028b9 ("mib: put net statistics on struct net") introduces
the bug since it put net statistics on struct net and free it when
net namespace is destroyed.
Moving init_ipv4_mibs() to the front of tcp_init() to fix this bug
and replace pr_crit() with panic() since continuing is meaningless
when init_ipv4_mibs() fails.
[1] https://groups.google.com/g/syzkaller/c/p1tn-_Kc6l4/m/smuL_FMAAgAJ?pli=1 |