| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fs: PM: Fix reverse check in filesystems_freeze_callback()
The freeze_all_ptr check in filesystems_freeze_callback() introduced by
commit a3f8f8662771 ("power: always freeze efivarfs") is reverse which
quite confusingly causes all file systems to be frozen when
filesystem_freeze_enabled is false.
On my systems it causes the WARN_ON_ONCE() in __set_task_frozen() to
trigger, most likely due to an attempt to freeze a file system that is
not ready for that.
Add a logical negation to the check in question to reverse it as
appropriate. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: ensure node page reads complete before f2fs_put_super() finishes
Xfstests generic/335, generic/336 sometimes crash with the following message:
F2FS-fs (dm-0): detect filesystem reference count leak during umount, type: 9, count: 1
------------[ cut here ]------------
kernel BUG at fs/f2fs/super.c:1939!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 1 UID: 0 PID: 609351 Comm: umount Tainted: G W 6.17.0-rc5-xfstests-g9dd1835ecda5 #1 PREEMPT(none)
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_put_super+0x3b3/0x3c0
Call Trace:
<TASK>
generic_shutdown_super+0x7e/0x190
kill_block_super+0x1a/0x40
kill_f2fs_super+0x9d/0x190
deactivate_locked_super+0x30/0xb0
cleanup_mnt+0xba/0x150
task_work_run+0x5c/0xa0
exit_to_user_mode_loop+0xb7/0xc0
do_syscall_64+0x1ae/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
---[ end trace 0000000000000000 ]---
It appears that sometimes it is possible that f2fs_put_super() is called before
all node page reads are completed.
Adding a call to f2fs_wait_on_all_pages() for F2FS_RD_NODE fixes the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Sign extend kfunc call arguments
The kfunc calls are native calls so they should follow LoongArch calling
conventions. Sign extend its arguments properly to avoid kernel panic.
This is done by adding a new emit_abi_ext() helper. The emit_abi_ext()
helper performs extension in place meaning a value already store in the
target register (Note: this is different from the existing sign_extend()
helper and thus we can't reuse it). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Add missing NULL pointer check for pingpong interface
It is checked almost always in dpu_encoder_phys_wb_setup_ctl(), but in a
single place the check is missing.
Also use convenient locals instead of phys_enc->* where available.
Patchwork: https://patchwork.freedesktop.org/patch/693860/ |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: avoid double free special payload
If a discard request needs to be retried, and that retry may fail before
a new special payload is added, a double free will result. Clear the
RQF_SPECIAL_LOAD when the request is cleaned. |
| In the Linux kernel, the following vulnerability has been resolved:
block/ioctl: prefer different overflow check
Running syzkaller with the newly reintroduced signed integer overflow
sanitizer shows this report:
[ 62.982337] ------------[ cut here ]------------
[ 62.985692] cgroup: Invalid name
[ 62.986211] UBSAN: signed-integer-overflow in ../block/ioctl.c:36:46
[ 62.989370] 9pnet_fd: p9_fd_create_tcp (7343): problem connecting socket to 127.0.0.1
[ 62.992992] 9223372036854775807 + 4095 cannot be represented in type 'long long'
[ 62.997827] 9pnet_fd: p9_fd_create_tcp (7345): problem connecting socket to 127.0.0.1
[ 62.999369] random: crng reseeded on system resumption
[ 63.000634] GUP no longer grows the stack in syz-executor.2 (7353): 20002000-20003000 (20001000)
[ 63.000668] CPU: 0 PID: 7353 Comm: syz-executor.2 Not tainted 6.8.0-rc2-00035-gb3ef86b5a957 #1
[ 63.000677] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 63.000682] Call Trace:
[ 63.000686] <TASK>
[ 63.000731] dump_stack_lvl+0x93/0xd0
[ 63.000919] __get_user_pages+0x903/0xd30
[ 63.001030] __gup_longterm_locked+0x153e/0x1ba0
[ 63.001041] ? _raw_read_unlock_irqrestore+0x17/0x50
[ 63.001072] ? try_get_folio+0x29c/0x2d0
[ 63.001083] internal_get_user_pages_fast+0x1119/0x1530
[ 63.001109] iov_iter_extract_pages+0x23b/0x580
[ 63.001206] bio_iov_iter_get_pages+0x4de/0x1220
[ 63.001235] iomap_dio_bio_iter+0x9b6/0x1410
[ 63.001297] __iomap_dio_rw+0xab4/0x1810
[ 63.001316] iomap_dio_rw+0x45/0xa0
[ 63.001328] ext4_file_write_iter+0xdde/0x1390
[ 63.001372] vfs_write+0x599/0xbd0
[ 63.001394] ksys_write+0xc8/0x190
[ 63.001403] do_syscall_64+0xd4/0x1b0
[ 63.001421] ? arch_exit_to_user_mode_prepare+0x3a/0x60
[ 63.001479] entry_SYSCALL_64_after_hwframe+0x6f/0x77
[ 63.001535] RIP: 0033:0x7f7fd3ebf539
[ 63.001551] Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
[ 63.001562] RSP: 002b:00007f7fd32570c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 63.001584] RAX: ffffffffffffffda RBX: 00007f7fd3ff3f80 RCX: 00007f7fd3ebf539
[ 63.001590] RDX: 4db6d1e4f7e43360 RSI: 0000000020000000 RDI: 0000000000000004
[ 63.001595] RBP: 00007f7fd3f1e496 R08: 0000000000000000 R09: 0000000000000000
[ 63.001599] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[ 63.001604] R13: 0000000000000006 R14: 00007f7fd3ff3f80 R15: 00007ffd415ad2b8
...
[ 63.018142] ---[ end trace ]---
Historically, the signed integer overflow sanitizer did not work in the
kernel due to its interaction with `-fwrapv` but this has since been
changed [1] in the newest version of Clang; It was re-enabled in the
kernel with Commit 557f8c582a9ba8ab ("ubsan: Reintroduce signed overflow
sanitizer").
Let's rework this overflow checking logic to not actually perform an
overflow during the check itself, thus avoiding the UBSAN splat.
[1]: https://github.com/llvm/llvm-project/pull/82432 |
| esm.sh is a nobuild content delivery network(CDN) for modern web development. In 136 and earlier, a path-traversal flaw in the handling of the X-Zone-Id HTTP header allows an attacker to cause the application to write files outside the intended storage location. The header value is used to build a filesystem path but is not properly canonicalized or restricted to the application’s storage base directory. As a result, supplying ../ sequences in X-Zone-Id causes files to be written to arbitrary directories. Version 136.1 contains a patch. |
| Mattermost Plugin Channel Export versions <=1.0.0 fail to restrict concurrent runs of the /export command which allows a user to consume excessive resource by running the /export command multiple times at once. |
| Amin Aliakbari, member of the AXIS OS Bug Bounty Program, has found a broken access control which would lead to less-privileged operator- and/or viewer accounts having more privileges than designed. The risk of exploitation is very low as it requires complex steps to execute, including knowing of account passwords and social engineering attacks in tricking the administrator to perform specific configurations on operator- and/or viewer-privileged accounts.
Axis has released patched AXIS OS a version for the highlighted flaw. Please refer to the Axis security advisory for more information and solution. |
| In x86's APIC (Advanced Programmable Interrupt Controller) architecture,
error conditions are reported in a status register. Furthermore, the OS
can opt to receive an interrupt when a new error occurs.
It is possible to configure the error interrupt with an illegal vector,
which generates an error when an error interrupt is raised.
This case causes Xen to recurse through vlapic_error(). The recursion
itself is bounded; errors accumulate in the the status register and only
generate an interrupt when a new status bit becomes set.
However, the lock protecting this state in Xen will try to be taken
recursively, and deadlock. |
| An issue in Espressif Esp idf v5.3.0 allows attackers to cause a Denial of Service (DoS) via a crafted data channel packet. |
| Quipux 4.0.1 through e1774ac allows enumeration of usernames, and accessing the Ecuadorean identification number for all registered users via the Administracion/usuarios/cambiar_password_olvido_validar.php txt_login parameter. |
| PTZOptics and possibly other ValueHD-based pan-tilt-zoom cameras use hard-coded, default administrative credentials. The passwords can readily be cracked. Many cameras have SSH or telnet listening on all interfaces. The passwords cannot be changed by the user, nor can the SSH or telnet service be disabled by the user. |
| A vulnerability classified as critical has been found in UTT 进取 750W up to 3.2.2-191225. This affects an unknown part of the file /goform/Fast_wireless_conf. The manipulation of the argument ssid leads to buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A stored Cross Site Scripting (XSS) vulnerability in the bulletin board (SchwarzeBrett) in adata Software GmbH Mitarbeiter Portal 2.15.2.0 allows remote authenticated users to execute arbitrary JavaScript code in the web browser of other users via manipulation of the 'Inhalt' parameter of the '/SchwarzeBrett/Nachrichten/CreateNachricht' or '/SchwarzeBrett/Nachrichten/EditNachricht/' requests. |
| libsmb2 6.2+ is vulnerable to Buffer Overflow. When processing SMB2 chained PDUs (NextCommand), libsmb2 repeatedly calls smb2_add_iovector() to append to a fixed-size iovec array without checking the upper bound of v->niov (SMB2_MAX_VECTORS=256). An attacker can craft responses with many chained PDUs to overflow v->niov and perform heap out-of-bounds writes, causing memory corruption, crashes, and potentially arbitrary code execution. The SMB2_OPLOCK_BREAK path bypasses message ID validation. |
| An improper neutralization of special elements used in an sql command ('sql injection') in Fortinet FortiSandbox 4.4.0 through 4.4.6, FortiSandbox 4.2 all versions, FortiSandbox 4.0 all versions, FortiSandbox 3.2 all versions, FortiSandbox 3.1 all versions, FortiSandbox 3.0 all versions, FortiSandbox Cloud 24.1 allows attacker to execute unauthorized code or commands via specifically crafted HTTP requests. |
| An improper neutralization of special elements used in an OS Command vulnerability [CWE-78] vulnerability in Fortinet FortiSandbox 5.0.0, FortiSandbox 4.4.0 through 4.4.6, FortiSandbox 4.2.1 through 4.2.7, FortiSandbox 4.0.0 through 4.0.5, FortiSandbox 3.2 all versions, FortiSandbox 3.1 all versions, FortiSandbox 3.0 all versions allows an authenticated attacker with at least read-only permission to execute unauthorized commands via crafted requests. |
| A client-side enforcement of server-side security vulnerability in Fortinet FortiSandbox 4.4.0 through 4.4.4, FortiSandbox 4.2.1 through 4.2.6 allows attacker to execute unauthorized code or commands via HTTP requests. |
| An improper limitation of a pathname to a restricted directory ('path traversal') vulnerability in Fortinet FortiSandbox 4.4.0 through 4.4.2, FortiSandbox 4.2.1 through 4.2.6, FortiSandbox 4.0 all versions, FortiSandbox 3.2 all versions, FortiSandbox 3.1 all versions, FortiSandbox 3.0 all versions, FortiSandbox 2.5 all versions, FortiSandbox 2.4 all versions, FortiSandbox 2.3 all versions, FortiSandbox 2.2 all versions, FortiSandbox 2.1 all versions, FortiSandbox 2.0 all versions allows attacker to execute unauthorized code or commands via CLI. |