| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
perf: hisi: Fix use-after-free when register pmu fails
When we fail to register the uncore pmu, the pmu context may not been
allocated. The error handing will call cpuhp_state_remove_instance()
to call uncore pmu offline callback, which migrate the pmu context.
Since that's liable to lead to some kind of use-after-free.
Use cpuhp_state_remove_instance_nocalls() instead of
cpuhp_state_remove_instance() so that the notifiers don't execute after
the PMU device has been failed to register. |
| In the Linux kernel, the following vulnerability has been resolved:
IB/mlx5: Fix init stage error handling to avoid double free of same QP and UAF
In the unlikely event that workqueue allocation fails and returns NULL in
mlx5_mkey_cache_init(), delete the call to
mlx5r_umr_resource_cleanup() (which frees the QP) in
mlx5_ib_stage_post_ib_reg_umr_init(). This will avoid attempted double
free of the same QP when __mlx5_ib_add() does its cleanup.
Resolves a splat:
Syzkaller reported a UAF in ib_destroy_qp_user
workqueue: Failed to create a rescuer kthread for wq "mkey_cache": -EINTR
infiniband mlx5_0: mlx5_mkey_cache_init:981:(pid 1642):
failed to create work queue
infiniband mlx5_0: mlx5_ib_stage_post_ib_reg_umr_init:4075:(pid 1642):
mr cache init failed -12
==================================================================
BUG: KASAN: slab-use-after-free in ib_destroy_qp_user (drivers/infiniband/core/verbs.c:2073)
Read of size 8 at addr ffff88810da310a8 by task repro_upstream/1642
Call Trace:
<TASK>
kasan_report (mm/kasan/report.c:590)
ib_destroy_qp_user (drivers/infiniband/core/verbs.c:2073)
mlx5r_umr_resource_cleanup (drivers/infiniband/hw/mlx5/umr.c:198)
__mlx5_ib_add (drivers/infiniband/hw/mlx5/main.c:4178)
mlx5r_probe (drivers/infiniband/hw/mlx5/main.c:4402)
...
</TASK>
Allocated by task 1642:
__kmalloc (./include/linux/kasan.h:198 mm/slab_common.c:1026
mm/slab_common.c:1039)
create_qp (./include/linux/slab.h:603 ./include/linux/slab.h:720
./include/rdma/ib_verbs.h:2795 drivers/infiniband/core/verbs.c:1209)
ib_create_qp_kernel (drivers/infiniband/core/verbs.c:1347)
mlx5r_umr_resource_init (drivers/infiniband/hw/mlx5/umr.c:164)
mlx5_ib_stage_post_ib_reg_umr_init (drivers/infiniband/hw/mlx5/main.c:4070)
__mlx5_ib_add (drivers/infiniband/hw/mlx5/main.c:4168)
mlx5r_probe (drivers/infiniband/hw/mlx5/main.c:4402)
...
Freed by task 1642:
__kmem_cache_free (mm/slub.c:1826 mm/slub.c:3809 mm/slub.c:3822)
ib_destroy_qp_user (drivers/infiniband/core/verbs.c:2112)
mlx5r_umr_resource_cleanup (drivers/infiniband/hw/mlx5/umr.c:198)
mlx5_ib_stage_post_ib_reg_umr_init (drivers/infiniband/hw/mlx5/main.c:4076
drivers/infiniband/hw/mlx5/main.c:4065)
__mlx5_ib_add (drivers/infiniband/hw/mlx5/main.c:4168)
mlx5r_probe (drivers/infiniband/hw/mlx5/main.c:4402)
... |
| In the Linux kernel, the following vulnerability has been resolved:
media: bttv: fix use after free error due to btv->timeout timer
There may be some a race condition between timer function
bttv_irq_timeout and bttv_remove. The timer is setup in
probe and there is no timer_delete operation in remove
function. When it hit kfree btv, the function might still be
invoked, which will cause use after free bug.
This bug is found by static analysis, it may be false positive.
Fix it by adding del_timer_sync invoking to the remove function.
cpu0 cpu1
bttv_probe
->timer_setup
->bttv_set_dma
->mod_timer;
bttv_remove
->kfree(btv);
->bttv_irq_timeout
->USE btv |
| In the Linux kernel, the following vulnerability has been resolved:
hsr: Prevent use after free in prp_create_tagged_frame()
The prp_fill_rct() function can fail. In that situation, it frees the
skb and returns NULL. Meanwhile on the success path, it returns the
original skb. So it's straight forward to fix bug by using the returned
value. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: synaptics-rmi4 - fix use after free in rmi_unregister_function()
The put_device() calls rmi_release_function() which frees "fn" so the
dereference on the next line "fn->num_of_irqs" is a use after free.
Move the put_device() to the end to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: fix uaf in nbd_open
Commit 4af5f2e03013 ("nbd: use blk_mq_alloc_disk and
blk_cleanup_disk") cleans up disk by blk_cleanup_disk() and it won't set
disk->private_data as NULL as before. UAF may be triggered in nbd_open()
if someone tries to open nbd device right after nbd_put() since nbd has
been free in nbd_dev_remove().
Fix this by implementing ->free_disk and free private data in it. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix htt pktlog locking
The ath11k active pdevs are protected by RCU but the htt pktlog handling
code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a
read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix dfs radar event locking
The ath11k active pdevs are protected by RCU but the DFS radar event
handling code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a
read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
vhost-vdpa: fix use after free in vhost_vdpa_probe()
The put_device() calls vhost_vdpa_release_dev() which calls
ida_simple_remove() and frees "v". So this call to
ida_simple_remove() is a use after free and a double free. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix gtk offload status event locking
The ath11k active pdevs are protected by RCU but the gtk offload status
event handling code calling ath11k_mac_get_arvif_by_vdev_id() was not
marked as a read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dfs-radar and temperature event locking
The ath12k active pdevs are protected by RCU but the DFS-radar and
temperature event handling code calling ath12k_mac_get_ar_by_pdev_id()
was not marked as a read-side critical section.
Mark the code in question as RCU read-side critical sections to avoid
any potential use-after-free issues.
Note that the temperature event handler looks like a place holder
currently but would still trigger an RCU lockdep splat.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: fix use-after-free in unix_stream_read_actor()
syzbot reported the following crash [1]
After releasing unix socket lock, u->oob_skb can be changed
by another thread. We must temporarily increase skb refcount
to make sure this other thread will not free the skb under us.
[1]
BUG: KASAN: slab-use-after-free in unix_stream_read_actor+0xa7/0xc0 net/unix/af_unix.c:2866
Read of size 4 at addr ffff88801f3b9cc4 by task syz-executor107/5297
CPU: 1 PID: 5297 Comm: syz-executor107 Not tainted 6.6.0-syzkaller-15910-gb8e3a87a627b #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xd9/0x1b0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:364 [inline]
print_report+0xc4/0x620 mm/kasan/report.c:475
kasan_report+0xda/0x110 mm/kasan/report.c:588
unix_stream_read_actor+0xa7/0xc0 net/unix/af_unix.c:2866
unix_stream_recv_urg net/unix/af_unix.c:2587 [inline]
unix_stream_read_generic+0x19a5/0x2480 net/unix/af_unix.c:2666
unix_stream_recvmsg+0x189/0x1b0 net/unix/af_unix.c:2903
sock_recvmsg_nosec net/socket.c:1044 [inline]
sock_recvmsg+0xe2/0x170 net/socket.c:1066
____sys_recvmsg+0x21f/0x5c0 net/socket.c:2803
___sys_recvmsg+0x115/0x1a0 net/socket.c:2845
__sys_recvmsg+0x114/0x1e0 net/socket.c:2875
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
RIP: 0033:0x7fc67492c559
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fc6748ab228 EFLAGS: 00000246 ORIG_RAX: 000000000000002f
RAX: ffffffffffffffda RBX: 000000000000001c RCX: 00007fc67492c559
RDX: 0000000040010083 RSI: 0000000020000140 RDI: 0000000000000004
RBP: 00007fc6749b6348 R08: 00007fc6748ab6c0 R09: 00007fc6748ab6c0
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fc6749b6340
R13: 00007fc6749b634c R14: 00007ffe9fac52a0 R15: 00007ffe9fac5388
</TASK>
Allocated by task 5295:
kasan_save_stack+0x33/0x50 mm/kasan/common.c:45
kasan_set_track+0x25/0x30 mm/kasan/common.c:52
__kasan_slab_alloc+0x81/0x90 mm/kasan/common.c:328
kasan_slab_alloc include/linux/kasan.h:188 [inline]
slab_post_alloc_hook mm/slab.h:763 [inline]
slab_alloc_node mm/slub.c:3478 [inline]
kmem_cache_alloc_node+0x180/0x3c0 mm/slub.c:3523
__alloc_skb+0x287/0x330 net/core/skbuff.c:641
alloc_skb include/linux/skbuff.h:1286 [inline]
alloc_skb_with_frags+0xe4/0x710 net/core/skbuff.c:6331
sock_alloc_send_pskb+0x7e4/0x970 net/core/sock.c:2780
sock_alloc_send_skb include/net/sock.h:1884 [inline]
queue_oob net/unix/af_unix.c:2147 [inline]
unix_stream_sendmsg+0xb5f/0x10a0 net/unix/af_unix.c:2301
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0xd5/0x180 net/socket.c:745
____sys_sendmsg+0x6ac/0x940 net/socket.c:2584
___sys_sendmsg+0x135/0x1d0 net/socket.c:2638
__sys_sendmsg+0x117/0x1e0 net/socket.c:2667
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x63/0x6b
Freed by task 5295:
kasan_save_stack+0x33/0x50 mm/kasan/common.c:45
kasan_set_track+0x25/0x30 mm/kasan/common.c:52
kasan_save_free_info+0x2b/0x40 mm/kasan/generic.c:522
____kasan_slab_free mm/kasan/common.c:236 [inline]
____kasan_slab_free+0x15b/0x1b0 mm/kasan/common.c:200
kasan_slab_free include/linux/kasan.h:164 [inline]
slab_free_hook mm/slub.c:1800 [inline]
slab_free_freelist_hook+0x114/0x1e0 mm/slub.c:1826
slab_free mm/slub.c:3809 [inline]
kmem_cache_free+0xf8/0x340 mm/slub.c:3831
kfree_skbmem+0xef/0x1b0 net/core/skbuff.c:1015
__kfree_skb net/core/skbuff.c:1073 [inline]
consume_skb net/core/skbuff.c:1288 [inline]
consume_skb+0xdf/0x170 net/core/skbuff.c:1282
queue_oob net/unix/af_unix.c:2178 [inline]
u
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix htt mlo-offset event locking
The ath12k active pdevs are protected by RCU but the htt mlo-offset
event handling code calling ath12k_mac_get_ar_by_pdev_id() was not
marked as a read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/psi: Fix use-after-free in ep_remove_wait_queue()
If a non-root cgroup gets removed when there is a thread that registered
trigger and is polling on a pressure file within the cgroup, the polling
waitqueue gets freed in the following path:
do_rmdir
cgroup_rmdir
kernfs_drain_open_files
cgroup_file_release
cgroup_pressure_release
psi_trigger_destroy
However, the polling thread still has a reference to the pressure file and
will access the freed waitqueue when the file is closed or upon exit:
fput
ep_eventpoll_release
ep_free
ep_remove_wait_queue
remove_wait_queue
This results in use-after-free as pasted below.
The fundamental problem here is that cgroup_file_release() (and
consequently waitqueue's lifetime) is not tied to the file's real lifetime.
Using wake_up_pollfree() here might be less than ideal, but it is in line
with the comment at commit 42288cb44c4b ("wait: add wake_up_pollfree()")
since the waitqueue's lifetime is not tied to file's one and can be
considered as another special case. While this would be fixable by somehow
making cgroup_file_release() be tied to the fput(), it would require
sizable refactoring at cgroups or higher layer which might be more
justifiable if we identify more cases like this.
BUG: KASAN: use-after-free in _raw_spin_lock_irqsave+0x60/0xc0
Write of size 4 at addr ffff88810e625328 by task a.out/4404
CPU: 19 PID: 4404 Comm: a.out Not tainted 6.2.0-rc6 #38
Hardware name: Amazon EC2 c5a.8xlarge/, BIOS 1.0 10/16/2017
Call Trace:
<TASK>
dump_stack_lvl+0x73/0xa0
print_report+0x16c/0x4e0
kasan_report+0xc3/0xf0
kasan_check_range+0x2d2/0x310
_raw_spin_lock_irqsave+0x60/0xc0
remove_wait_queue+0x1a/0xa0
ep_free+0x12c/0x170
ep_eventpoll_release+0x26/0x30
__fput+0x202/0x400
task_work_run+0x11d/0x170
do_exit+0x495/0x1130
do_group_exit+0x100/0x100
get_signal+0xd67/0xde0
arch_do_signal_or_restart+0x2a/0x2b0
exit_to_user_mode_prepare+0x94/0x100
syscall_exit_to_user_mode+0x20/0x40
do_syscall_64+0x52/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Allocated by task 4404:
kasan_set_track+0x3d/0x60
__kasan_kmalloc+0x85/0x90
psi_trigger_create+0x113/0x3e0
pressure_write+0x146/0x2e0
cgroup_file_write+0x11c/0x250
kernfs_fop_write_iter+0x186/0x220
vfs_write+0x3d8/0x5c0
ksys_write+0x90/0x110
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 4407:
kasan_set_track+0x3d/0x60
kasan_save_free_info+0x27/0x40
____kasan_slab_free+0x11d/0x170
slab_free_freelist_hook+0x87/0x150
__kmem_cache_free+0xcb/0x180
psi_trigger_destroy+0x2e8/0x310
cgroup_file_release+0x4f/0xb0
kernfs_drain_open_files+0x165/0x1f0
kernfs_drain+0x162/0x1a0
__kernfs_remove+0x1fb/0x310
kernfs_remove_by_name_ns+0x95/0xe0
cgroup_addrm_files+0x67f/0x700
cgroup_destroy_locked+0x283/0x3c0
cgroup_rmdir+0x29/0x100
kernfs_iop_rmdir+0xd1/0x140
vfs_rmdir+0xfe/0x240
do_rmdir+0x13d/0x280
__x64_sys_rmdir+0x2c/0x30
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: Fix UAF in j1939_sk_match_filter during setsockopt(SO_J1939_FILTER)
Lock jsk->sk to prevent UAF when setsockopt(..., SO_J1939_FILTER, ...)
modifies jsk->filters while receiving packets.
Following trace was seen on affected system:
==================================================================
BUG: KASAN: slab-use-after-free in j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
Read of size 4 at addr ffff888012144014 by task j1939/350
CPU: 0 PID: 350 Comm: j1939 Tainted: G W OE 6.5.0-rc5 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
print_report+0xd3/0x620
? kasan_complete_mode_report_info+0x7d/0x200
? j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
kasan_report+0xc2/0x100
? j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
__asan_load4+0x84/0xb0
j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
j1939_sk_recv+0x20b/0x320 [can_j1939]
? __kasan_check_write+0x18/0x20
? __pfx_j1939_sk_recv+0x10/0x10 [can_j1939]
? j1939_simple_recv+0x69/0x280 [can_j1939]
? j1939_ac_recv+0x5e/0x310 [can_j1939]
j1939_can_recv+0x43f/0x580 [can_j1939]
? __pfx_j1939_can_recv+0x10/0x10 [can_j1939]
? raw_rcv+0x42/0x3c0 [can_raw]
? __pfx_j1939_can_recv+0x10/0x10 [can_j1939]
can_rcv_filter+0x11f/0x350 [can]
can_receive+0x12f/0x190 [can]
? __pfx_can_rcv+0x10/0x10 [can]
can_rcv+0xdd/0x130 [can]
? __pfx_can_rcv+0x10/0x10 [can]
__netif_receive_skb_one_core+0x13d/0x150
? __pfx___netif_receive_skb_one_core+0x10/0x10
? __kasan_check_write+0x18/0x20
? _raw_spin_lock_irq+0x8c/0xe0
__netif_receive_skb+0x23/0xb0
process_backlog+0x107/0x260
__napi_poll+0x69/0x310
net_rx_action+0x2a1/0x580
? __pfx_net_rx_action+0x10/0x10
? __pfx__raw_spin_lock+0x10/0x10
? handle_irq_event+0x7d/0xa0
__do_softirq+0xf3/0x3f8
do_softirq+0x53/0x80
</IRQ>
<TASK>
__local_bh_enable_ip+0x6e/0x70
netif_rx+0x16b/0x180
can_send+0x32b/0x520 [can]
? __pfx_can_send+0x10/0x10 [can]
? __check_object_size+0x299/0x410
raw_sendmsg+0x572/0x6d0 [can_raw]
? __pfx_raw_sendmsg+0x10/0x10 [can_raw]
? apparmor_socket_sendmsg+0x2f/0x40
? __pfx_raw_sendmsg+0x10/0x10 [can_raw]
sock_sendmsg+0xef/0x100
sock_write_iter+0x162/0x220
? __pfx_sock_write_iter+0x10/0x10
? __rtnl_unlock+0x47/0x80
? security_file_permission+0x54/0x320
vfs_write+0x6ba/0x750
? __pfx_vfs_write+0x10/0x10
? __fget_light+0x1ca/0x1f0
? __rcu_read_unlock+0x5b/0x280
ksys_write+0x143/0x170
? __pfx_ksys_write+0x10/0x10
? __kasan_check_read+0x15/0x20
? fpregs_assert_state_consistent+0x62/0x70
__x64_sys_write+0x47/0x60
do_syscall_64+0x60/0x90
? do_syscall_64+0x6d/0x90
? irqentry_exit+0x3f/0x50
? exc_page_fault+0x79/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Allocated by task 348:
kasan_save_stack+0x2a/0x50
kasan_set_track+0x29/0x40
kasan_save_alloc_info+0x1f/0x30
__kasan_kmalloc+0xb5/0xc0
__kmalloc_node_track_caller+0x67/0x160
j1939_sk_setsockopt+0x284/0x450 [can_j1939]
__sys_setsockopt+0x15c/0x2f0
__x64_sys_setsockopt+0x6b/0x80
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Freed by task 349:
kasan_save_stack+0x2a/0x50
kasan_set_track+0x29/0x40
kasan_save_free_info+0x2f/0x50
__kasan_slab_free+0x12e/0x1c0
__kmem_cache_free+0x1b9/0x380
kfree+0x7a/0x120
j1939_sk_setsockopt+0x3b2/0x450 [can_j1939]
__sys_setsockopt+0x15c/0x2f0
__x64_sys_setsockopt+0x6b/0x80
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8 |
| In the Linux kernel, the following vulnerability has been resolved:
sh: push-switch: Reorder cleanup operations to avoid use-after-free bug
The original code puts flush_work() before timer_shutdown_sync()
in switch_drv_remove(). Although we use flush_work() to stop
the worker, it could be rescheduled in switch_timer(). As a result,
a use-after-free bug can occur. The details are shown below:
(cpu 0) | (cpu 1)
switch_drv_remove() |
flush_work() |
... | switch_timer // timer
| schedule_work(&psw->work)
timer_shutdown_sync() |
... | switch_work_handler // worker
kfree(psw) // free |
| psw->state = 0 // use
This patch puts timer_shutdown_sync() before flush_work() to
mitigate the bugs. As a result, the worker and timer will be
stopped safely before the deallocate operations. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm, kexec, ima: Use memblock_free_late() from ima_free_kexec_buffer()
The code calling ima_free_kexec_buffer() runs long after the memblock
allocator has already been torn down, potentially resulting in a use
after free in memblock_isolate_range().
With KASAN or KFENCE, this use after free will result in a BUG
from the idle task, and a subsequent kernel panic.
Switch ima_free_kexec_buffer() over to memblock_free_late() to avoid
that bug. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential use after free in nilfs_gccache_submit_read_data()
In nilfs_gccache_submit_read_data(), brelse(bh) is called to drop the
reference count of bh when the call to nilfs_dat_translate() fails. If
the reference count hits 0 and its owner page gets unlocked, bh may be
freed. However, bh->b_page is dereferenced to put the page after that,
which may result in a use-after-free bug. This patch moves the release
operation after unlocking and putting the page.
NOTE: The function in question is only called in GC, and in combination
with current userland tools, address translation using DAT does not occur
in that function, so the code path that causes this issue will not be
executed. However, it is possible to run that code path by intentionally
modifying the userland GC library or by calling the GC ioctl directly.
[konishi.ryusuke@gmail.com: NOTE added to the commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
ieee802154: ca8210: Fix a potential UAF in ca8210_probe
If of_clk_add_provider() fails in ca8210_register_ext_clock(),
it calls clk_unregister() to release priv->clk and returns an
error. However, the caller ca8210_probe() then calls ca8210_remove(),
where priv->clk is freed again in ca8210_unregister_ext_clock(). In
this case, a use-after-free may happen in the second time we call
clk_unregister().
Fix this by removing the first clk_unregister(). Also, priv->clk could
be an error code on failure of clk_register_fixed_rate(). Use
IS_ERR_OR_NULL to catch this case in ca8210_unregister_ext_clock(). |
| In the Linux kernel, the following vulnerability has been resolved:
ravb: Fix use-after-free issue in ravb_tx_timeout_work()
The ravb_stop() should call cancel_work_sync(). Otherwise,
ravb_tx_timeout_work() is possible to use the freed priv after
ravb_remove() was called like below:
CPU0 CPU1
ravb_tx_timeout()
ravb_remove()
unregister_netdev()
free_netdev(ndev)
// free priv
ravb_tx_timeout_work()
// use priv
unregister_netdev() will call .ndo_stop() so that ravb_stop() is
called. And, after phy_stop() is called, netif_carrier_off()
is also called. So that .ndo_tx_timeout() will not be called
after phy_stop(). |