| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: stratix10-svc: fix bug in saving controller data
Fix the incorrect usage of platform_set_drvdata and dev_set_drvdata. They
both are of the same data and overrides each other. This resulted in the
rmmod of the svc driver to fail and throw a kernel panic for kthread_stop
and fifo free. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix WARN_ON in tracing_buffers_mmap_close for split VMAs
When a VMA is split (e.g., by partial munmap or MAP_FIXED), the kernel
calls vm_ops->close on each portion. For trace buffer mappings, this
results in ring_buffer_unmap() being called multiple times while
ring_buffer_map() was only called once.
This causes ring_buffer_unmap() to return -ENODEV on subsequent calls
because user_mapped is already 0, triggering a WARN_ON.
Trace buffer mappings cannot support partial mappings because the ring
buffer structure requires the complete buffer including the meta page.
Fix this by adding a may_split callback that returns -EINVAL to prevent
VMA splits entirely. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: renesas_usbhs: Fix synchronous external abort on unbind
A synchronous external abort occurs on the Renesas RZ/G3S SoC if unbind is
executed after the configuration sequence described above:
modprobe usb_f_ecm
modprobe libcomposite
modprobe configfs
cd /sys/kernel/config/usb_gadget
mkdir -p g1
cd g1
echo "0x1d6b" > idVendor
echo "0x0104" > idProduct
mkdir -p strings/0x409
echo "0123456789" > strings/0x409/serialnumber
echo "Renesas." > strings/0x409/manufacturer
echo "Ethernet Gadget" > strings/0x409/product
mkdir -p functions/ecm.usb0
mkdir -p configs/c.1
mkdir -p configs/c.1/strings/0x409
echo "ECM" > configs/c.1/strings/0x409/configuration
if [ ! -L configs/c.1/ecm.usb0 ]; then
ln -s functions/ecm.usb0 configs/c.1
fi
echo 11e20000.usb > UDC
echo 11e20000.usb > /sys/bus/platform/drivers/renesas_usbhs/unbind
The displayed trace is as follows:
Internal error: synchronous external abort: 0000000096000010 [#1] SMP
CPU: 0 UID: 0 PID: 188 Comm: sh Tainted: G M 6.17.0-rc7-next-20250922-00010-g41050493b2bd #55 PREEMPT
Tainted: [M]=MACHINE_CHECK
Hardware name: Renesas SMARC EVK version 2 based on r9a08g045s33 (DT)
pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs]
lr : usbhsg_update_pullup+0x3c/0x68 [renesas_usbhs]
sp : ffff8000838b3920
x29: ffff8000838b3920 x28: ffff00000d585780 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: ffff00000c3e3810
x23: ffff00000d5e5c80 x22: ffff00000d5e5d40 x21: 0000000000000000
x20: 0000000000000000 x19: ffff00000d5e5c80 x18: 0000000000000020
x17: 2e30303230316531 x16: 312d7968703a7968 x15: 3d454d414e5f4344
x14: 000000000000002c x13: 0000000000000000 x12: 0000000000000000
x11: ffff00000f358f38 x10: ffff00000f358db0 x9 : ffff00000b41f418
x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d
x5 : 8080808000000000 x4 : 000000004b5ccb9d x3 : 0000000000000000
x2 : 0000000000000000 x1 : ffff800083790000 x0 : ffff00000d5e5c80
Call trace:
usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs] (P)
usbhsg_pullup+0x4c/0x7c [renesas_usbhs]
usb_gadget_disconnect_locked+0x48/0xd4
gadget_unbind_driver+0x44/0x114
device_remove+0x4c/0x80
device_release_driver_internal+0x1c8/0x224
device_release_driver+0x18/0x24
bus_remove_device+0xcc/0x10c
device_del+0x14c/0x404
usb_del_gadget+0x88/0xc0
usb_del_gadget_udc+0x18/0x30
usbhs_mod_gadget_remove+0x24/0x44 [renesas_usbhs]
usbhs_mod_remove+0x20/0x30 [renesas_usbhs]
usbhs_remove+0x98/0xdc [renesas_usbhs]
platform_remove+0x20/0x30
device_remove+0x4c/0x80
device_release_driver_internal+0x1c8/0x224
device_driver_detach+0x18/0x24
unbind_store+0xb4/0xb8
drv_attr_store+0x24/0x38
sysfs_kf_write+0x7c/0x94
kernfs_fop_write_iter+0x128/0x1b8
vfs_write+0x2ac/0x350
ksys_write+0x68/0xfc
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x110
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xf0
el0t_64_sync_handler+0xa0/0xe4
el0t_64_sync+0x198/0x19c
Code: 7100003f 1a9f07e1 531c6c22 f9400001 (79400021)
---[ end trace 0000000000000000 ]---
note: sh[188] exited with irqs disabled
note: sh[188] exited with preempt_count 1
The issue occurs because usbhs_sys_function_pullup(), which accesses the IP
registers, is executed after the USBHS clocks have been disabled. The
problem is reproducible on the Renesas RZ/G3S SoC starting with the
addition of module stop in the clock enable/disable APIs. With module stop
functionality enabled, a bus error is expected if a master accesses a
module whose clock has been stopped and module stop activated.
Disable the IP clocks at the end of remove. |
| In the Linux kernel, the following vulnerability has been resolved:
team: Move team device type change at the end of team_port_add
Attempting to add a port device that is already up will expectedly fail,
but not before modifying the team device header_ops.
In the case of the syzbot reproducer the gre0 device is
already in state UP when it attempts to add it as a
port device of team0, this fails but before that
header_ops->create of team0 is changed from eth_header to ipgre_header
in the call to team_dev_type_check_change.
Later when we end up in ipgre_header() struct ip_tunnel* points to nonsense
as the private data of the device still holds a struct team.
Example sequence of iproute2 commands to reproduce the hang/BUG():
ip link add dev team0 type team
ip link add dev gre0 type gre
ip link set dev gre0 up
ip link set dev gre0 master team0
ip link set dev team0 up
ping -I team0 1.1.1.1
Move team_dev_type_check_change down where all other checks have passed
as it changes the dev type with no way to restore it in case
one of the checks that follow it fail.
Also make sure to preserve the origial mtu assignment:
- If port_dev is not the same type as dev, dev takes mtu from port_dev
- If port_dev is the same type as dev, port_dev takes mtu from dev
This is done by adding a conditional before the call to dev_set_mtu
to prevent it from assigning port_dev->mtu = dev->mtu and instead
letting team_dev_type_check_change assign dev->mtu = port_dev->mtu.
The conditional is needed because the patch moves the call to
team_dev_type_check_change past dev_set_mtu.
Testing:
- team device driver in-tree selftests
- Add/remove various devices as slaves of team device
- syzbot |
| In the Linux kernel, the following vulnerability has been resolved:
veth: reduce XDP no_direct return section to fix race
As explain in commit fa349e396e48 ("veth: Fix race with AF_XDP exposing
old or uninitialized descriptors") for veth there is a chance after
napi_complete_done() that another CPU can manage start another NAPI
instance running veth_pool(). For NAPI this is correctly handled as the
napi_schedule_prep() check will prevent multiple instances from getting
scheduled, but for the remaining code in veth_pool() this can run
concurrent with the newly started NAPI instance.
The problem/race is that xdp_clear_return_frame_no_direct() isn't
designed to be nested.
Prior to commit 401cb7dae813 ("net: Reference bpf_redirect_info via
task_struct on PREEMPT_RT.") the temporary BPF net context
bpf_redirect_info was stored per CPU, where this wasn't an issue. Since
this commit the BPF context is stored in 'current' task_struct. When
running veth in threaded-NAPI mode, then the kthread becomes the storage
area. Now a race exists between two concurrent veth_pool() function calls
one exiting NAPI and one running new NAPI, both using the same BPF net
context.
Race is when another CPU gets within the xdp_set_return_frame_no_direct()
section before exiting veth_pool() calls the clear-function
xdp_clear_return_frame_no_direct(). |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_receive_bulk_callback(): check actual_length before accessing header
The driver expects to receive a struct gs_host_frame in
gs_usb_receive_bulk_callback().
Use struct_group to describe the header of the struct gs_host_frame and
check that we have at least received the header before accessing any
members of it.
To resubmit the URB, do not dereference the pointer chain
"dev->parent->hf_size_rx" but use "parent->hf_size_rx" instead. Since
"urb->context" contains "parent", it is always defined, while "dev" is not
defined if the URB it too short. |
| In the Linux kernel, the following vulnerability has been resolved:
ppp: associate skb with a device at tx
Syzkaller triggered flow dissector warning with the following:
r0 = openat$ppp(0xffffffffffffff9c, &(0x7f0000000000), 0xc0802, 0x0)
ioctl$PPPIOCNEWUNIT(r0, 0xc004743e, &(0x7f00000000c0))
ioctl$PPPIOCSACTIVE(r0, 0x40107446, &(0x7f0000000240)={0x2, &(0x7f0000000180)=[{0x20, 0x0, 0x0, 0xfffff034}, {0x6}]})
pwritev(r0, &(0x7f0000000040)=[{&(0x7f0000000140)='\x00!', 0x2}], 0x1, 0x0, 0x0)
[ 9.485814] WARNING: CPU: 3 PID: 329 at net/core/flow_dissector.c:1016 __skb_flow_dissect+0x1ee0/0x1fa0
[ 9.485929] skb_get_poff+0x53/0xa0
[ 9.485937] bpf_skb_get_pay_offset+0xe/0x20
[ 9.485944] ? ppp_send_frame+0xc2/0x5b0
[ 9.485949] ? _raw_spin_unlock_irqrestore+0x40/0x60
[ 9.485958] ? __ppp_xmit_process+0x7a/0xe0
[ 9.485968] ? ppp_xmit_process+0x5b/0xb0
[ 9.485974] ? ppp_write+0x12a/0x190
[ 9.485981] ? do_iter_write+0x18e/0x2d0
[ 9.485987] ? __import_iovec+0x30/0x130
[ 9.485997] ? do_pwritev+0x1b6/0x240
[ 9.486016] ? trace_hardirqs_on+0x47/0x50
[ 9.486023] ? __x64_sys_pwritev+0x24/0x30
[ 9.486026] ? do_syscall_64+0x3d/0x80
[ 9.486031] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd
Flow dissector tries to find skb net namespace either via device
or via socket. Neigher is set in ppp_send_frame, so let's manually
use ppp->dev. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid crash when inline data creation follows DIO write
When inode is created and written to using direct IO, there is nothing
to clear the EXT4_STATE_MAY_INLINE_DATA flag. Thus when inode gets
truncated later to say 1 byte and written using normal write, we will
try to store the data as inline data. This confuses the code later
because the inode now has both normal block and inline data allocated
and the confusion manifests for example as:
kernel BUG at fs/ext4/inode.c:2721!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 359 Comm: repro Not tainted 5.19.0-rc8-00001-g31ba1e3b8305-dirty #15
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
RIP: 0010:ext4_writepages+0x363d/0x3660
RSP: 0018:ffffc90000ccf260 EFLAGS: 00010293
RAX: ffffffff81e1abcd RBX: 0000008000000000 RCX: ffff88810842a180
RDX: 0000000000000000 RSI: 0000008000000000 RDI: 0000000000000000
RBP: ffffc90000ccf650 R08: ffffffff81e17d58 R09: ffffed10222c680b
R10: dfffe910222c680c R11: 1ffff110222c680a R12: ffff888111634128
R13: ffffc90000ccf880 R14: 0000008410000000 R15: 0000000000000001
FS: 00007f72635d2640(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000565243379180 CR3: 000000010aa74000 CR4: 0000000000150eb0
Call Trace:
<TASK>
do_writepages+0x397/0x640
filemap_fdatawrite_wbc+0x151/0x1b0
file_write_and_wait_range+0x1c9/0x2b0
ext4_sync_file+0x19e/0xa00
vfs_fsync_range+0x17b/0x190
ext4_buffered_write_iter+0x488/0x530
ext4_file_write_iter+0x449/0x1b90
vfs_write+0xbcd/0xf40
ksys_write+0x198/0x2c0
__x64_sys_write+0x7b/0x90
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Fix the problem by clearing EXT4_STATE_MAY_INLINE_DATA when we are doing
direct IO write to a file. |
| In the Linux kernel, the following vulnerability has been resolved:
net: If sock is dead don't access sock's sk_wq in sk_stream_wait_memory
Fixes the below NULL pointer dereference:
[...]
[ 14.471200] Call Trace:
[ 14.471562] <TASK>
[ 14.471882] lock_acquire+0x245/0x2e0
[ 14.472416] ? remove_wait_queue+0x12/0x50
[ 14.473014] ? _raw_spin_lock_irqsave+0x17/0x50
[ 14.473681] _raw_spin_lock_irqsave+0x3d/0x50
[ 14.474318] ? remove_wait_queue+0x12/0x50
[ 14.474907] remove_wait_queue+0x12/0x50
[ 14.475480] sk_stream_wait_memory+0x20d/0x340
[ 14.476127] ? do_wait_intr_irq+0x80/0x80
[ 14.476704] do_tcp_sendpages+0x287/0x600
[ 14.477283] tcp_bpf_push+0xab/0x260
[ 14.477817] tcp_bpf_sendmsg_redir+0x297/0x500
[ 14.478461] ? __local_bh_enable_ip+0x77/0xe0
[ 14.479096] tcp_bpf_send_verdict+0x105/0x470
[ 14.479729] tcp_bpf_sendmsg+0x318/0x4f0
[ 14.480311] sock_sendmsg+0x2d/0x40
[ 14.480822] ____sys_sendmsg+0x1b4/0x1c0
[ 14.481390] ? copy_msghdr_from_user+0x62/0x80
[ 14.482048] ___sys_sendmsg+0x78/0xb0
[ 14.482580] ? vmf_insert_pfn_prot+0x91/0x150
[ 14.483215] ? __do_fault+0x2a/0x1a0
[ 14.483738] ? do_fault+0x15e/0x5d0
[ 14.484246] ? __handle_mm_fault+0x56b/0x1040
[ 14.484874] ? lock_is_held_type+0xdf/0x130
[ 14.485474] ? find_held_lock+0x2d/0x90
[ 14.486046] ? __sys_sendmsg+0x41/0x70
[ 14.486587] __sys_sendmsg+0x41/0x70
[ 14.487105] ? intel_pmu_drain_pebs_core+0x350/0x350
[ 14.487822] do_syscall_64+0x34/0x80
[ 14.488345] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
The test scenario has the following flow:
thread1 thread2
----------- ---------------
tcp_bpf_sendmsg
tcp_bpf_send_verdict
tcp_bpf_sendmsg_redir sock_close
tcp_bpf_push_locked __sock_release
tcp_bpf_push //inet_release
do_tcp_sendpages sock->ops->release
sk_stream_wait_memory // tcp_close
sk_wait_event sk->sk_prot->close
release_sock(__sk);
***
lock_sock(sk);
__tcp_close
sock_orphan(sk)
sk->sk_wq = NULL
release_sock
****
lock_sock(__sk);
remove_wait_queue(sk_sleep(sk), &wait);
sk_sleep(sk)
//NULL pointer dereference
&rcu_dereference_raw(sk->sk_wq)->wait
While waiting for memory in thread1, the socket is released with its wait
queue because thread2 has closed it. This caused by tcp_bpf_send_verdict
didn't increase the f_count of psock->sk_redir->sk_socket->file in thread1.
We should check if SOCK_DEAD flag is set on wakeup in sk_stream_wait_memory
before accessing the wait queue. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid resizing to a partial cluster size
This patch avoids an attempt to resize the filesystem to an
unaligned cluster boundary. An online resize to a size that is not
integral to cluster size results in the last iteration attempting to
grow the fs by a negative amount, which trips a BUG_ON and leaves the fs
with a corrupted in-memory superblock. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64: Init jump labels before parse_early_param()
On 64-bit, calling jump_label_init() in setup_feature_keys() is too
late because static keys may be used in subroutines of
parse_early_param() which is again subroutine of early_init_devtree().
For example booting with "threadirqs":
static_key_enable_cpuslocked(): static key '0xc000000002953260' used before call to jump_label_init()
WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:166 static_key_enable_cpuslocked+0xfc/0x120
...
NIP static_key_enable_cpuslocked+0xfc/0x120
LR static_key_enable_cpuslocked+0xf8/0x120
Call Trace:
static_key_enable_cpuslocked+0xf8/0x120 (unreliable)
static_key_enable+0x30/0x50
setup_forced_irqthreads+0x28/0x40
do_early_param+0xa0/0x108
parse_args+0x290/0x4e0
parse_early_options+0x48/0x5c
parse_early_param+0x58/0x84
early_init_devtree+0xd4/0x518
early_setup+0xb4/0x214
So call jump_label_init() just before parse_early_param() in
early_init_devtree().
[mpe: Add call trace to change log and minor wording edits.] |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix refcount bug in sk_psock_get (2)
Syzkaller reports refcount bug as follows:
------------[ cut here ]------------
refcount_t: saturated; leaking memory.
WARNING: CPU: 1 PID: 3605 at lib/refcount.c:19 refcount_warn_saturate+0xf4/0x1e0 lib/refcount.c:19
Modules linked in:
CPU: 1 PID: 3605 Comm: syz-executor208 Not tainted 5.18.0-syzkaller-03023-g7e062cda7d90 #0
<TASK>
__refcount_add_not_zero include/linux/refcount.h:163 [inline]
__refcount_inc_not_zero include/linux/refcount.h:227 [inline]
refcount_inc_not_zero include/linux/refcount.h:245 [inline]
sk_psock_get+0x3bc/0x410 include/linux/skmsg.h:439
tls_data_ready+0x6d/0x1b0 net/tls/tls_sw.c:2091
tcp_data_ready+0x106/0x520 net/ipv4/tcp_input.c:4983
tcp_data_queue+0x25f2/0x4c90 net/ipv4/tcp_input.c:5057
tcp_rcv_state_process+0x1774/0x4e80 net/ipv4/tcp_input.c:6659
tcp_v4_do_rcv+0x339/0x980 net/ipv4/tcp_ipv4.c:1682
sk_backlog_rcv include/net/sock.h:1061 [inline]
__release_sock+0x134/0x3b0 net/core/sock.c:2849
release_sock+0x54/0x1b0 net/core/sock.c:3404
inet_shutdown+0x1e0/0x430 net/ipv4/af_inet.c:909
__sys_shutdown_sock net/socket.c:2331 [inline]
__sys_shutdown_sock net/socket.c:2325 [inline]
__sys_shutdown+0xf1/0x1b0 net/socket.c:2343
__do_sys_shutdown net/socket.c:2351 [inline]
__se_sys_shutdown net/socket.c:2349 [inline]
__x64_sys_shutdown+0x50/0x70 net/socket.c:2349
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
During SMC fallback process in connect syscall, kernel will
replaces TCP with SMC. In order to forward wakeup
smc socket waitqueue after fallback, kernel will sets
clcsk->sk_user_data to origin smc socket in
smc_fback_replace_callbacks().
Later, in shutdown syscall, kernel will calls
sk_psock_get(), which treats the clcsk->sk_user_data
as psock type, triggering the refcnt warning.
So, the root cause is that smc and psock, both will use
sk_user_data field. So they will mismatch this field
easily.
This patch solves it by using another bit(defined as
SK_USER_DATA_PSOCK) in PTRMASK, to mark whether
sk_user_data points to a psock object or not.
This patch depends on a PTRMASK introduced in commit f1ff5ce2cd5e
("net, sk_msg: Clear sk_user_data pointer on clone if tagged").
For there will possibly be more flags in the sk_user_data field,
this patch also refactor sk_user_data flags code to be more generic
to improve its maintainability. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Drop snd_BUG_ON() from snd_usbmidi_output_open()
snd_usbmidi_output_open() has a check of the NULL port with
snd_BUG_ON(). snd_BUG_ON() was used as this shouldn't have happened,
but in reality, the NULL port may be seen when the device gives an
invalid endpoint setup at the descriptor, hence the driver skips the
allocation. That is, the check itself is valid and snd_BUG_ON()
should be dropped from there. Otherwise it's confusing as if it were
a real bug, as recently syzbot stumbled on it. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempolicy: fix uninit-value in mpol_rebind_policy()
mpol_set_nodemask()(mm/mempolicy.c) does not set up nodemask when
pol->mode is MPOL_LOCAL. Check pol->mode before access
pol->w.cpuset_mems_allowed in mpol_rebind_policy()(mm/mempolicy.c).
BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:352 [inline]
BUG: KMSAN: uninit-value in mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368
mpol_rebind_policy mm/mempolicy.c:352 [inline]
mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368
cpuset_change_task_nodemask kernel/cgroup/cpuset.c:1711 [inline]
cpuset_attach+0x787/0x15e0 kernel/cgroup/cpuset.c:2278
cgroup_migrate_execute+0x1023/0x1d20 kernel/cgroup/cgroup.c:2515
cgroup_migrate kernel/cgroup/cgroup.c:2771 [inline]
cgroup_attach_task+0x540/0x8b0 kernel/cgroup/cgroup.c:2804
__cgroup1_procs_write+0x5cc/0x7a0 kernel/cgroup/cgroup-v1.c:520
cgroup1_tasks_write+0x94/0xb0 kernel/cgroup/cgroup-v1.c:539
cgroup_file_write+0x4c2/0x9e0 kernel/cgroup/cgroup.c:3852
kernfs_fop_write_iter+0x66a/0x9f0 fs/kernfs/file.c:296
call_write_iter include/linux/fs.h:2162 [inline]
new_sync_write fs/read_write.c:503 [inline]
vfs_write+0x1318/0x2030 fs/read_write.c:590
ksys_write+0x28b/0x510 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0xdb/0x120 fs/read_write.c:652
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae
Uninit was created at:
slab_post_alloc_hook mm/slab.h:524 [inline]
slab_alloc_node mm/slub.c:3251 [inline]
slab_alloc mm/slub.c:3259 [inline]
kmem_cache_alloc+0x902/0x11c0 mm/slub.c:3264
mpol_new mm/mempolicy.c:293 [inline]
do_set_mempolicy+0x421/0xb70 mm/mempolicy.c:853
kernel_set_mempolicy mm/mempolicy.c:1504 [inline]
__do_sys_set_mempolicy mm/mempolicy.c:1510 [inline]
__se_sys_set_mempolicy+0x44c/0xb60 mm/mempolicy.c:1507
__x64_sys_set_mempolicy+0xd8/0x110 mm/mempolicy.c:1507
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae
KMSAN: uninit-value in mpol_rebind_task (2)
https://syzkaller.appspot.com/bug?id=d6eb90f952c2a5de9ea718a1b873c55cb13b59dc
This patch seems to fix below bug too.
KMSAN: uninit-value in mpol_rebind_mm (2)
https://syzkaller.appspot.com/bug?id=f2fecd0d7013f54ec4162f60743a2b28df40926b
The uninit-value is pol->w.cpuset_mems_allowed in mpol_rebind_policy().
When syzkaller reproducer runs to the beginning of mpol_new(),
mpol_new() mm/mempolicy.c
do_mbind() mm/mempolicy.c
kernel_mbind() mm/mempolicy.c
`mode` is 1(MPOL_PREFERRED), nodes_empty(*nodes) is `true` and `flags`
is 0. Then
mode = MPOL_LOCAL;
...
policy->mode = mode;
policy->flags = flags;
will be executed. So in mpol_set_nodemask(),
mpol_set_nodemask() mm/mempolicy.c
do_mbind()
kernel_mbind()
pol->mode is 4 (MPOL_LOCAL), that `nodemask` in `pol` is not initialized,
which will be accessed in mpol_rebind_policy(). |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Avoid pci_dev_lock() AB/BA deadlock with sriov_numvfs_store()
The sysfs sriov_numvfs_store() path acquires the device lock before the
config space access lock:
sriov_numvfs_store
device_lock # A (1) acquire device lock
sriov_configure
vfio_pci_sriov_configure # (for example)
vfio_pci_core_sriov_configure
pci_disable_sriov
sriov_disable
pci_cfg_access_lock
pci_wait_cfg # B (4) wait for dev->block_cfg_access == 0
Previously, pci_dev_lock() acquired the config space access lock before the
device lock:
pci_dev_lock
pci_cfg_access_lock
dev->block_cfg_access = 1 # B (2) set dev->block_cfg_access = 1
device_lock # A (3) wait for device lock
Any path that uses pci_dev_lock(), e.g., pci_reset_function(), may
deadlock with sriov_numvfs_store() if the operations occur in the sequence
(1) (2) (3) (4).
Avoid the deadlock by reversing the order in pci_dev_lock() so it acquires
the device lock before the config space access lock, the same as the
sriov_numvfs_store() path.
[bhelgaas: combined and adapted commit log from Jay Zhou's independent
subsequent posting:
https://lore.kernel.org/r/20220404062539.1710-1-jianjay.zhou@huawei.com] |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: prevent underflow in nfssvc_decode_writeargs()
Smatch complains:
fs/nfsd/nfsxdr.c:341 nfssvc_decode_writeargs()
warn: no lower bound on 'args->len'
Change the type to unsigned to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix double free race when mount fails in cifs_get_root()
When cifs_get_root() fails during cifs_smb3_do_mount() we call
deactivate_locked_super() which eventually will call delayed_free() which
will free the context.
In this situation we should not proceed to enter the out: section in
cifs_smb3_do_mount() and free the same resources a second time.
[Thu Feb 10 12:59:06 2022] BUG: KASAN: use-after-free in rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] Read of size 8 at addr ffff888364f4d110 by task swapper/1/0
[Thu Feb 10 12:59:06 2022] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G OE 5.17.0-rc3+ #4
[Thu Feb 10 12:59:06 2022] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.0 12/17/2019
[Thu Feb 10 12:59:06 2022] Call Trace:
[Thu Feb 10 12:59:06 2022] <IRQ>
[Thu Feb 10 12:59:06 2022] dump_stack_lvl+0x5d/0x78
[Thu Feb 10 12:59:06 2022] print_address_description.constprop.0+0x24/0x150
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] kasan_report.cold+0x7d/0x117
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] __asan_load8+0x86/0xa0
[Thu Feb 10 12:59:06 2022] rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] rcu_core+0x547/0xca0
[Thu Feb 10 12:59:06 2022] ? call_rcu+0x3c0/0x3c0
[Thu Feb 10 12:59:06 2022] ? __this_cpu_preempt_check+0x13/0x20
[Thu Feb 10 12:59:06 2022] ? lock_is_held_type+0xea/0x140
[Thu Feb 10 12:59:06 2022] rcu_core_si+0xe/0x10
[Thu Feb 10 12:59:06 2022] __do_softirq+0x1d4/0x67b
[Thu Feb 10 12:59:06 2022] __irq_exit_rcu+0x100/0x150
[Thu Feb 10 12:59:06 2022] irq_exit_rcu+0xe/0x30
[Thu Feb 10 12:59:06 2022] sysvec_hyperv_stimer0+0x9d/0xc0
...
[Thu Feb 10 12:59:07 2022] Freed by task 58179:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] kasan_set_track+0x25/0x30
[Thu Feb 10 12:59:07 2022] kasan_set_free_info+0x24/0x40
[Thu Feb 10 12:59:07 2022] ____kasan_slab_free+0x137/0x170
[Thu Feb 10 12:59:07 2022] __kasan_slab_free+0x12/0x20
[Thu Feb 10 12:59:07 2022] slab_free_freelist_hook+0xb3/0x1d0
[Thu Feb 10 12:59:07 2022] kfree+0xcd/0x520
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0x149/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae
[Thu Feb 10 12:59:07 2022] Last potentially related work creation:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] __kasan_record_aux_stack+0xb6/0xc0
[Thu Feb 10 12:59:07 2022] kasan_record_aux_stack_noalloc+0xb/0x10
[Thu Feb 10 12:59:07 2022] call_rcu+0x76/0x3c0
[Thu Feb 10 12:59:07 2022] cifs_umount+0xce/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] cifs_kill_sb+0xc8/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] deactivate_locked_super+0x5d/0xd0
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0xab9/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix invalid address access when enabling SCAN log level
The variable i is changed when setting random MAC address and causes
invalid address access when printing the value of pi->reqs[i]->reqid.
We replace reqs index with ri to fix the issue.
[ 136.726473] Unable to handle kernel access to user memory outside uaccess routines at virtual address 0000000000000000
[ 136.737365] Mem abort info:
[ 136.740172] ESR = 0x96000004
[ 136.743359] Exception class = DABT (current EL), IL = 32 bits
[ 136.749294] SET = 0, FnV = 0
[ 136.752481] EA = 0, S1PTW = 0
[ 136.755635] Data abort info:
[ 136.758514] ISV = 0, ISS = 0x00000004
[ 136.762487] CM = 0, WnR = 0
[ 136.765522] user pgtable: 4k pages, 48-bit VAs, pgdp = 000000005c4e2577
[ 136.772265] [0000000000000000] pgd=0000000000000000
[ 136.777160] Internal error: Oops: 96000004 [#1] PREEMPT SMP
[ 136.782732] Modules linked in: brcmfmac(O) brcmutil(O) cfg80211(O) compat(O)
[ 136.789788] Process wificond (pid: 3175, stack limit = 0x00000000053048fb)
[ 136.796664] CPU: 3 PID: 3175 Comm: wificond Tainted: G O 4.19.42-00001-g531a5f5 #1
[ 136.805532] Hardware name: Freescale i.MX8MQ EVK (DT)
[ 136.810584] pstate: 60400005 (nZCv daif +PAN -UAO)
[ 136.815429] pc : brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac]
[ 136.821811] lr : brcmf_pno_config_sched_scans+0x67c/0xa80 [brcmfmac]
[ 136.828162] sp : ffff00000e9a3880
[ 136.831475] x29: ffff00000e9a3890 x28: ffff800020543400
[ 136.836786] x27: ffff8000b1008880 x26: ffff0000012bf6a0
[ 136.842098] x25: ffff80002054345c x24: ffff800088d22400
[ 136.847409] x23: ffff0000012bf638 x22: ffff0000012bf6d8
[ 136.852721] x21: ffff8000aced8fc0 x20: ffff8000ac164400
[ 136.858032] x19: ffff00000e9a3946 x18: 0000000000000000
[ 136.863343] x17: 0000000000000000 x16: 0000000000000000
[ 136.868655] x15: ffff0000093f3b37 x14: 0000000000000050
[ 136.873966] x13: 0000000000003135 x12: 0000000000000000
[ 136.879277] x11: 0000000000000000 x10: ffff000009a61888
[ 136.884589] x9 : 000000000000000f x8 : 0000000000000008
[ 136.889900] x7 : 303a32303d726464 x6 : ffff00000a1f957d
[ 136.895211] x5 : 0000000000000000 x4 : ffff00000e9a3942
[ 136.900523] x3 : 0000000000000000 x2 : ffff0000012cead8
[ 136.905834] x1 : ffff0000012bf6d8 x0 : 0000000000000000
[ 136.911146] Call trace:
[ 136.913623] brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac]
[ 136.919658] brcmf_pno_start_sched_scan+0xa4/0x118 [brcmfmac]
[ 136.925430] brcmf_cfg80211_sched_scan_start+0x80/0xe0 [brcmfmac]
[ 136.931636] nl80211_start_sched_scan+0x140/0x308 [cfg80211]
[ 136.937298] genl_rcv_msg+0x358/0x3f4
[ 136.940960] netlink_rcv_skb+0xb4/0x118
[ 136.944795] genl_rcv+0x34/0x48
[ 136.947935] netlink_unicast+0x264/0x300
[ 136.951856] netlink_sendmsg+0x2e4/0x33c
[ 136.955781] __sys_sendto+0x120/0x19c |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix use-after-free in ext4_orphan_cleanup
I caught a issue as follows:
==================================================================
BUG: KASAN: use-after-free in __list_add_valid+0x28/0x1a0
Read of size 8 at addr ffff88814b13f378 by task mount/710
CPU: 1 PID: 710 Comm: mount Not tainted 6.1.0-rc3-next #370
Call Trace:
<TASK>
dump_stack_lvl+0x73/0x9f
print_report+0x25d/0x759
kasan_report+0xc0/0x120
__asan_load8+0x99/0x140
__list_add_valid+0x28/0x1a0
ext4_orphan_cleanup+0x564/0x9d0 [ext4]
__ext4_fill_super+0x48e2/0x5300 [ext4]
ext4_fill_super+0x19f/0x3a0 [ext4]
get_tree_bdev+0x27b/0x450
ext4_get_tree+0x19/0x30 [ext4]
vfs_get_tree+0x49/0x150
path_mount+0xaae/0x1350
do_mount+0xe2/0x110
__x64_sys_mount+0xf0/0x190
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
[...]
==================================================================
Above issue may happen as follows:
-------------------------------------
ext4_fill_super
ext4_orphan_cleanup
--- loop1: assume last_orphan is 12 ---
list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan)
ext4_truncate --> return 0
ext4_inode_attach_jinode --> return -ENOMEM
iput(inode) --> free inode<12>
--- loop2: last_orphan is still 12 ---
list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
// use inode<12> and trigger UAF
To solve this issue, we need to propagate the return value of
ext4_inode_attach_jinode() appropriately. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: fix leak of memory fw |