| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Stop parsing channels bits when all channels are found.
If a usb audio device sets more bits than the amount of channels
it could write outside of the map array. |
| In the Linux kernel, the following vulnerability has been resolved:
cpumap: Zero-initialise xdp_rxq_info struct before running XDP program
When running an XDP program that is attached to a cpumap entry, we don't
initialise the xdp_rxq_info data structure being used in the xdp_buff
that backs the XDP program invocation. Tobias noticed that this leads to
random values being returned as the xdp_md->rx_queue_index value for XDP
programs running in a cpumap.
This means we're basically returning the contents of the uninitialised
memory, which is bad. Fix this by zero-initialising the rxq data
structure before running the XDP program. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix potential "struct net" leak in inet6_rtm_getaddr()
It seems that if userspace provides a correct IFA_TARGET_NETNSID value
but no IFA_ADDRESS and IFA_LOCAL attributes, inet6_rtm_getaddr()
returns -EINVAL with an elevated "struct net" refcount. |
| In the Linux kernel, the following vulnerability has been resolved:
pipe: wakeup wr_wait after setting max_usage
Commit c73be61cede5 ("pipe: Add general notification queue support") a
regression was introduced that would lock up resized pipes under certain
conditions. See the reproducer in [1].
The commit resizing the pipe ring size was moved to a different
function, doing that moved the wakeup for pipe->wr_wait before actually
raising pipe->max_usage. If a pipe was full before the resize occured it
would result in the wakeup never actually triggering pipe_write.
Set @max_usage and @nr_accounted before waking writers if this isn't a
watch queue.
[Christian Brauner <brauner@kernel.org>: rewrite to account for watch queues] |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix RELEASE_LOCKOWNER
The test on so_count in nfsd4_release_lockowner() is nonsense and
harmful. Revert to using check_for_locks(), changing that to not sleep.
First: harmful.
As is documented in the kdoc comment for nfsd4_release_lockowner(), the
test on so_count can transiently return a false positive resulting in a
return of NFS4ERR_LOCKS_HELD when in fact no locks are held. This is
clearly a protocol violation and with the Linux NFS client it can cause
incorrect behaviour.
If RELEASE_LOCKOWNER is sent while some other thread is still
processing a LOCK request which failed because, at the time that request
was received, the given owner held a conflicting lock, then the nfsd
thread processing that LOCK request can hold a reference (conflock) to
the lock owner that causes nfsd4_release_lockowner() to return an
incorrect error.
The Linux NFS client ignores that NFS4ERR_LOCKS_HELD error because it
never sends NFS4_RELEASE_LOCKOWNER without first releasing any locks, so
it knows that the error is impossible. It assumes the lock owner was in
fact released so it feels free to use the same lock owner identifier in
some later locking request.
When it does reuse a lock owner identifier for which a previous RELEASE
failed, it will naturally use a lock_seqid of zero. However the server,
which didn't release the lock owner, will expect a larger lock_seqid and
so will respond with NFS4ERR_BAD_SEQID.
So clearly it is harmful to allow a false positive, which testing
so_count allows.
The test is nonsense because ... well... it doesn't mean anything.
so_count is the sum of three different counts.
1/ the set of states listed on so_stateids
2/ the set of active vfs locks owned by any of those states
3/ various transient counts such as for conflicting locks.
When it is tested against '2' it is clear that one of these is the
transient reference obtained by find_lockowner_str_locked(). It is not
clear what the other one is expected to be.
In practice, the count is often 2 because there is precisely one state
on so_stateids. If there were more, this would fail.
In my testing I see two circumstances when RELEASE_LOCKOWNER is called.
In one case, CLOSE is called before RELEASE_LOCKOWNER. That results in
all the lock states being removed, and so the lockowner being discarded
(it is removed when there are no more references which usually happens
when the lock state is discarded). When nfsd4_release_lockowner() finds
that the lock owner doesn't exist, it returns success.
The other case shows an so_count of '2' and precisely one state listed
in so_stateid. It appears that the Linux client uses a separate lock
owner for each file resulting in one lock state per lock owner, so this
test on '2' is safe. For another client it might not be safe.
So this patch changes check_for_locks() to use the (newish)
find_any_file_locked() so that it doesn't take a reference on the
nfs4_file and so never calls nfsd_file_put(), and so never sleeps. With
this check is it safe to restore the use of check_for_locks() rather
than testing so_count against the mysterious '2'. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid resizing to a partial cluster size
This patch avoids an attempt to resize the filesystem to an
unaligned cluster boundary. An online resize to a size that is not
integral to cluster size results in the last iteration attempting to
grow the fs by a negative amount, which trips a BUG_ON and leaves the fs
with a corrupted in-memory superblock. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempolicy: fix uninit-value in mpol_rebind_policy()
mpol_set_nodemask()(mm/mempolicy.c) does not set up nodemask when
pol->mode is MPOL_LOCAL. Check pol->mode before access
pol->w.cpuset_mems_allowed in mpol_rebind_policy()(mm/mempolicy.c).
BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:352 [inline]
BUG: KMSAN: uninit-value in mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368
mpol_rebind_policy mm/mempolicy.c:352 [inline]
mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368
cpuset_change_task_nodemask kernel/cgroup/cpuset.c:1711 [inline]
cpuset_attach+0x787/0x15e0 kernel/cgroup/cpuset.c:2278
cgroup_migrate_execute+0x1023/0x1d20 kernel/cgroup/cgroup.c:2515
cgroup_migrate kernel/cgroup/cgroup.c:2771 [inline]
cgroup_attach_task+0x540/0x8b0 kernel/cgroup/cgroup.c:2804
__cgroup1_procs_write+0x5cc/0x7a0 kernel/cgroup/cgroup-v1.c:520
cgroup1_tasks_write+0x94/0xb0 kernel/cgroup/cgroup-v1.c:539
cgroup_file_write+0x4c2/0x9e0 kernel/cgroup/cgroup.c:3852
kernfs_fop_write_iter+0x66a/0x9f0 fs/kernfs/file.c:296
call_write_iter include/linux/fs.h:2162 [inline]
new_sync_write fs/read_write.c:503 [inline]
vfs_write+0x1318/0x2030 fs/read_write.c:590
ksys_write+0x28b/0x510 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0xdb/0x120 fs/read_write.c:652
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae
Uninit was created at:
slab_post_alloc_hook mm/slab.h:524 [inline]
slab_alloc_node mm/slub.c:3251 [inline]
slab_alloc mm/slub.c:3259 [inline]
kmem_cache_alloc+0x902/0x11c0 mm/slub.c:3264
mpol_new mm/mempolicy.c:293 [inline]
do_set_mempolicy+0x421/0xb70 mm/mempolicy.c:853
kernel_set_mempolicy mm/mempolicy.c:1504 [inline]
__do_sys_set_mempolicy mm/mempolicy.c:1510 [inline]
__se_sys_set_mempolicy+0x44c/0xb60 mm/mempolicy.c:1507
__x64_sys_set_mempolicy+0xd8/0x110 mm/mempolicy.c:1507
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae
KMSAN: uninit-value in mpol_rebind_task (2)
https://syzkaller.appspot.com/bug?id=d6eb90f952c2a5de9ea718a1b873c55cb13b59dc
This patch seems to fix below bug too.
KMSAN: uninit-value in mpol_rebind_mm (2)
https://syzkaller.appspot.com/bug?id=f2fecd0d7013f54ec4162f60743a2b28df40926b
The uninit-value is pol->w.cpuset_mems_allowed in mpol_rebind_policy().
When syzkaller reproducer runs to the beginning of mpol_new(),
mpol_new() mm/mempolicy.c
do_mbind() mm/mempolicy.c
kernel_mbind() mm/mempolicy.c
`mode` is 1(MPOL_PREFERRED), nodes_empty(*nodes) is `true` and `flags`
is 0. Then
mode = MPOL_LOCAL;
...
policy->mode = mode;
policy->flags = flags;
will be executed. So in mpol_set_nodemask(),
mpol_set_nodemask() mm/mempolicy.c
do_mbind()
kernel_mbind()
pol->mode is 4 (MPOL_LOCAL), that `nodemask` in `pol` is not initialized,
which will be accessed in mpol_rebind_policy(). |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Avoid pci_dev_lock() AB/BA deadlock with sriov_numvfs_store()
The sysfs sriov_numvfs_store() path acquires the device lock before the
config space access lock:
sriov_numvfs_store
device_lock # A (1) acquire device lock
sriov_configure
vfio_pci_sriov_configure # (for example)
vfio_pci_core_sriov_configure
pci_disable_sriov
sriov_disable
pci_cfg_access_lock
pci_wait_cfg # B (4) wait for dev->block_cfg_access == 0
Previously, pci_dev_lock() acquired the config space access lock before the
device lock:
pci_dev_lock
pci_cfg_access_lock
dev->block_cfg_access = 1 # B (2) set dev->block_cfg_access = 1
device_lock # A (3) wait for device lock
Any path that uses pci_dev_lock(), e.g., pci_reset_function(), may
deadlock with sriov_numvfs_store() if the operations occur in the sequence
(1) (2) (3) (4).
Avoid the deadlock by reversing the order in pci_dev_lock() so it acquires
the device lock before the config space access lock, the same as the
sriov_numvfs_store() path.
[bhelgaas: combined and adapted commit log from Jay Zhou's independent
subsequent posting:
https://lore.kernel.org/r/20220404062539.1710-1-jianjay.zhou@huawei.com] |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix double free race when mount fails in cifs_get_root()
When cifs_get_root() fails during cifs_smb3_do_mount() we call
deactivate_locked_super() which eventually will call delayed_free() which
will free the context.
In this situation we should not proceed to enter the out: section in
cifs_smb3_do_mount() and free the same resources a second time.
[Thu Feb 10 12:59:06 2022] BUG: KASAN: use-after-free in rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] Read of size 8 at addr ffff888364f4d110 by task swapper/1/0
[Thu Feb 10 12:59:06 2022] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G OE 5.17.0-rc3+ #4
[Thu Feb 10 12:59:06 2022] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.0 12/17/2019
[Thu Feb 10 12:59:06 2022] Call Trace:
[Thu Feb 10 12:59:06 2022] <IRQ>
[Thu Feb 10 12:59:06 2022] dump_stack_lvl+0x5d/0x78
[Thu Feb 10 12:59:06 2022] print_address_description.constprop.0+0x24/0x150
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] kasan_report.cold+0x7d/0x117
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] __asan_load8+0x86/0xa0
[Thu Feb 10 12:59:06 2022] rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] rcu_core+0x547/0xca0
[Thu Feb 10 12:59:06 2022] ? call_rcu+0x3c0/0x3c0
[Thu Feb 10 12:59:06 2022] ? __this_cpu_preempt_check+0x13/0x20
[Thu Feb 10 12:59:06 2022] ? lock_is_held_type+0xea/0x140
[Thu Feb 10 12:59:06 2022] rcu_core_si+0xe/0x10
[Thu Feb 10 12:59:06 2022] __do_softirq+0x1d4/0x67b
[Thu Feb 10 12:59:06 2022] __irq_exit_rcu+0x100/0x150
[Thu Feb 10 12:59:06 2022] irq_exit_rcu+0xe/0x30
[Thu Feb 10 12:59:06 2022] sysvec_hyperv_stimer0+0x9d/0xc0
...
[Thu Feb 10 12:59:07 2022] Freed by task 58179:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] kasan_set_track+0x25/0x30
[Thu Feb 10 12:59:07 2022] kasan_set_free_info+0x24/0x40
[Thu Feb 10 12:59:07 2022] ____kasan_slab_free+0x137/0x170
[Thu Feb 10 12:59:07 2022] __kasan_slab_free+0x12/0x20
[Thu Feb 10 12:59:07 2022] slab_free_freelist_hook+0xb3/0x1d0
[Thu Feb 10 12:59:07 2022] kfree+0xcd/0x520
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0x149/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae
[Thu Feb 10 12:59:07 2022] Last potentially related work creation:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] __kasan_record_aux_stack+0xb6/0xc0
[Thu Feb 10 12:59:07 2022] kasan_record_aux_stack_noalloc+0xb/0x10
[Thu Feb 10 12:59:07 2022] call_rcu+0x76/0x3c0
[Thu Feb 10 12:59:07 2022] cifs_umount+0xce/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] cifs_kill_sb+0xc8/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] deactivate_locked_super+0x5d/0xd0
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0xab9/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
clk: qcom: ipq8074: dont disable gcc_sleep_clk_src
Once the usb sleep clocks are disabled, clock framework is trying to
disable the sleep clock source also.
However, it seems that it cannot be disabled and trying to do so produces:
[ 245.436390] ------------[ cut here ]------------
[ 245.441233] gcc_sleep_clk_src status stuck at 'on'
[ 245.441254] WARNING: CPU: 2 PID: 223 at clk_branch_wait+0x130/0x140
[ 245.450435] Modules linked in: xhci_plat_hcd xhci_hcd dwc3 dwc3_qcom leds_gpio
[ 245.456601] CPU: 2 PID: 223 Comm: sh Not tainted 5.18.0-rc4 #215
[ 245.463889] Hardware name: Xiaomi AX9000 (DT)
[ 245.470050] pstate: 204000c5 (nzCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 245.474307] pc : clk_branch_wait+0x130/0x140
[ 245.481073] lr : clk_branch_wait+0x130/0x140
[ 245.485588] sp : ffffffc009f2bad0
[ 245.489838] x29: ffffffc009f2bad0 x28: ffffff8003e6c800 x27: 0000000000000000
[ 245.493057] x26: 0000000000000000 x25: 0000000000000000 x24: ffffff800226ef20
[ 245.500175] x23: ffffffc0089ff550 x22: 0000000000000000 x21: ffffffc008476ad0
[ 245.507294] x20: 0000000000000000 x19: ffffffc00965ac70 x18: fffffffffffc51a7
[ 245.514413] x17: 68702e3030303837 x16: 3a6d726f6674616c x15: ffffffc089f2b777
[ 245.521531] x14: ffffffc0095c9d18 x13: 0000000000000129 x12: 0000000000000129
[ 245.528649] x11: 00000000ffffffea x10: ffffffc009621d18 x9 : 0000000000000001
[ 245.535767] x8 : 0000000000000001 x7 : 0000000000017fe8 x6 : 0000000000000001
[ 245.542885] x5 : ffffff803fdca6d8 x4 : 0000000000000000 x3 : 0000000000000027
[ 245.550002] x2 : 0000000000000027 x1 : 0000000000000023 x0 : 0000000000000026
[ 245.557122] Call trace:
[ 245.564229] clk_branch_wait+0x130/0x140
[ 245.566490] clk_branch2_disable+0x2c/0x40
[ 245.570656] clk_core_disable+0x60/0xb0
[ 245.574561] clk_core_disable+0x68/0xb0
[ 245.578293] clk_disable+0x30/0x50
[ 245.582113] dwc3_qcom_remove+0x60/0xc0 [dwc3_qcom]
[ 245.585588] platform_remove+0x28/0x60
[ 245.590361] device_remove+0x4c/0x80
[ 245.594179] device_release_driver_internal+0x1dc/0x230
[ 245.597914] device_driver_detach+0x18/0x30
[ 245.602861] unbind_store+0xec/0x110
[ 245.607027] drv_attr_store+0x24/0x40
[ 245.610847] sysfs_kf_write+0x44/0x60
[ 245.614405] kernfs_fop_write_iter+0x128/0x1c0
[ 245.618052] new_sync_write+0xc0/0x130
[ 245.622391] vfs_write+0x1d4/0x2a0
[ 245.626123] ksys_write+0x58/0xe0
[ 245.629508] __arm64_sys_write+0x1c/0x30
[ 245.632895] invoke_syscall.constprop.0+0x5c/0x110
[ 245.636890] do_el0_svc+0xa0/0x150
[ 245.641488] el0_svc+0x18/0x60
[ 245.644872] el0t_64_sync_handler+0xa4/0x130
[ 245.647914] el0t_64_sync+0x174/0x178
[ 245.652340] ---[ end trace 0000000000000000 ]---
So, add CLK_IS_CRITICAL flag to the clock so that the kernel won't try
to disable the sleep clock. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix NULL pointer dereference in is_ftrace_trampoline when ftrace is dead
ftrace_startup does not remove ops from ftrace_ops_list when
ftrace_startup_enable fails:
register_ftrace_function
ftrace_startup
__register_ftrace_function
...
add_ftrace_ops(&ftrace_ops_list, ops)
...
...
ftrace_startup_enable // if ftrace failed to modify, ftrace_disabled is set to 1
...
return 0 // ops is in the ftrace_ops_list.
When ftrace_disabled = 1, unregister_ftrace_function simply returns without doing anything:
unregister_ftrace_function
ftrace_shutdown
if (unlikely(ftrace_disabled))
return -ENODEV; // return here, __unregister_ftrace_function is not executed,
// as a result, ops is still in the ftrace_ops_list
__unregister_ftrace_function
...
If ops is dynamically allocated, it will be free later, in this case,
is_ftrace_trampoline accesses NULL pointer:
is_ftrace_trampoline
ftrace_ops_trampoline
do_for_each_ftrace_op(op, ftrace_ops_list) // OOPS! op may be NULL!
Syzkaller reports as follows:
[ 1203.506103] BUG: kernel NULL pointer dereference, address: 000000000000010b
[ 1203.508039] #PF: supervisor read access in kernel mode
[ 1203.508798] #PF: error_code(0x0000) - not-present page
[ 1203.509558] PGD 800000011660b067 P4D 800000011660b067 PUD 130fb8067 PMD 0
[ 1203.510560] Oops: 0000 [#1] SMP KASAN PTI
[ 1203.511189] CPU: 6 PID: 29532 Comm: syz-executor.2 Tainted: G B W 5.10.0 #8
[ 1203.512324] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 1203.513895] RIP: 0010:is_ftrace_trampoline+0x26/0xb0
[ 1203.514644] Code: ff eb d3 90 41 55 41 54 49 89 fc 55 53 e8 f2 00 fd ff 48 8b 1d 3b 35 5d 03 e8 e6 00 fd ff 48 8d bb 90 00 00 00 e8 2a 81 26 00 <48> 8b ab 90 00 00 00 48 85 ed 74 1d e8 c9 00 fd ff 48 8d bb 98 00
[ 1203.518838] RSP: 0018:ffffc900012cf960 EFLAGS: 00010246
[ 1203.520092] RAX: 0000000000000000 RBX: 000000000000007b RCX: ffffffff8a331866
[ 1203.521469] RDX: 0000000000000000 RSI: 0000000000000008 RDI: 000000000000010b
[ 1203.522583] RBP: 0000000000000000 R08: 0000000000000000 R09: ffffffff8df18b07
[ 1203.523550] R10: fffffbfff1be3160 R11: 0000000000000001 R12: 0000000000478399
[ 1203.524596] R13: 0000000000000000 R14: ffff888145088000 R15: 0000000000000008
[ 1203.525634] FS: 00007f429f5f4700(0000) GS:ffff8881daf00000(0000) knlGS:0000000000000000
[ 1203.526801] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1203.527626] CR2: 000000000000010b CR3: 0000000170e1e001 CR4: 00000000003706e0
[ 1203.528611] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1203.529605] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Therefore, when ftrace_startup_enable fails, we need to rollback registration
process and remove ops from ftrace_ops_list. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: imx-sdma: Fix a possible memory leak in sdma_transfer_init
If the function sdma_load_context() fails, the sdma_desc will be
freed, but the allocated desc->bd is forgot to be freed.
We already met the sdma_load_context() failure case and the log as
below:
[ 450.699064] imx-sdma 30bd0000.dma-controller: Timeout waiting for CH0 ready
...
In this case, the desc->bd will not be freed without this change. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Always check inode size of inline inodes
Check if the inode size of stuffed (inline) inodes is within the allowed
range when reading inodes from disk (gfs2_dinode_in()). This prevents
us from on-disk corruption.
The two checks in stuffed_readpage() and gfs2_unstuffer_page() that just
truncate inline data to the maximum allowed size don't actually make
sense, and they can be removed now as well. |
| In the Linux kernel, the following vulnerability has been resolved:
ata: libata-core: fix NULL pointer deref in ata_host_alloc_pinfo()
In an unlikely (and probably wrong?) case that the 'ppi' parameter of
ata_host_alloc_pinfo() points to an array starting with a NULL pointer,
there's going to be a kernel oops as the 'pi' local variable won't get
reassigned from the initial value of NULL. Initialize 'pi' instead to
'&ata_dummy_port_info' to fix the possible kernel oops for good...
Found by Linux Verification Center (linuxtesting.org) with the SVACE static
analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: add reserved GDT blocks check
We capture a NULL pointer issue when resizing a corrupt ext4 image which
is freshly clear resize_inode feature (not run e2fsck). It could be
simply reproduced by following steps. The problem is because of the
resize_inode feature was cleared, and it will convert the filesystem to
meta_bg mode in ext4_resize_fs(), but the es->s_reserved_gdt_blocks was
not reduced to zero, so could we mistakenly call reserve_backup_gdb()
and passing an uninitialized resize_inode to it when adding new group
descriptors.
mkfs.ext4 /dev/sda 3G
tune2fs -O ^resize_inode /dev/sda #forget to run requested e2fsck
mount /dev/sda /mnt
resize2fs /dev/sda 8G
========
BUG: kernel NULL pointer dereference, address: 0000000000000028
CPU: 19 PID: 3243 Comm: resize2fs Not tainted 5.18.0-rc7-00001-gfde086c5ebfd #748
...
RIP: 0010:ext4_flex_group_add+0xe08/0x2570
...
Call Trace:
<TASK>
ext4_resize_fs+0xbec/0x1660
__ext4_ioctl+0x1749/0x24e0
ext4_ioctl+0x12/0x20
__x64_sys_ioctl+0xa6/0x110
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f2dd739617b
========
The fix is simple, add a check in ext4_resize_begin() to make sure that
the es->s_reserved_gdt_blocks is zero when the resize_inode feature is
disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
dm raid: fix KASAN warning in raid5_add_disks
There's a KASAN warning in raid5_add_disk when running the LVM testsuite.
The warning happens in the test
lvconvert-raid-reshape-linear_to_raid6-single-type.sh. We fix the warning
by verifying that rdev->saved_raid_disk is within limits. |
| In the Linux kernel, the following vulnerability has been resolved:
srcu: Tighten cleanup_srcu_struct() GP checks
Currently, cleanup_srcu_struct() checks for a grace period in progress,
but it does not check for a grace period that has not yet started but
which might start at any time. Such a situation could result in a
use-after-free bug, so this commit adds a check for a grace period that
is needed but not yet started to cleanup_srcu_struct(). |
| In the Linux kernel, the following vulnerability has been resolved:
x86/speculation: Fill RSB on vmexit for IBRS
Prevent RSB underflow/poisoning attacks with RSB. While at it, add a
bunch of comments to attempt to document the current state of tribal
knowledge about RSB attacks and what exactly is being mitigated. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Cancel pending work at closing a MIDI substream
At closing a USB MIDI output substream, there might be still a pending
work, which would eventually access the rawmidi runtime object that is
being released. For fixing the race, make sure to cancel the pending
work at closing. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix potential double free during failed mount
RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=2088799 |