Search Results (72260 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38697 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: jfs: upper bound check of tree index in dbAllocAG When computing the tree index in dbAllocAG, we never check if we are out of bounds realative to the size of the stree. This could happen in a scenario where the filesystem metadata are corrupted.
CVE-2025-38694 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: dvb-frontends: dib7090p: fix null-ptr-deref in dib7090p_rw_on_apb() In dib7090p_rw_on_apb, msg is controlled by user. When msg[0].buf is null and msg[0].len is zero, former checks on msg[0].buf would be passed. If accessing msg[0].buf[2] without sanity check, null pointer deref would happen. We add check on msg[0].len to prevent crash. Similar issue occurs when access msg[1].buf[0] and msg[1].buf[1]. Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()")
CVE-2025-38494 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: core: do not bypass hid_hw_raw_request hid_hw_raw_request() is actually useful to ensure the provided buffer and length are valid. Directly calling in the low level transport driver function bypassed those checks and allowed invalid paramto be used.
CVE-2025-38425 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: i2c: tegra: check msg length in SMBUS block read For SMBUS block read, do not continue to read if the message length passed from the device is '0' or greater than the maximum allowed bytes.
CVE-2025-38204 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.1 High
In the Linux kernel, the following vulnerability has been resolved: jfs: fix array-index-out-of-bounds read in add_missing_indices stbl is s8 but it must contain offsets into slot which can go from 0 to 127. Added a bound check for that error and return -EIO if the check fails. Also make jfs_readdir return with error if add_missing_indices returns with an error.
CVE-2025-38198 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: fbcon: Make sure modelist not set on unregistered console It looks like attempting to write to the "store_modes" sysfs node will run afoul of unregistered consoles: UBSAN: array-index-out-of-bounds in drivers/video/fbdev/core/fbcon.c:122:28 index -1 is out of range for type 'fb_info *[32]' ... fbcon_info_from_console+0x192/0x1a0 drivers/video/fbdev/core/fbcon.c:122 fbcon_new_modelist+0xbf/0x2d0 drivers/video/fbdev/core/fbcon.c:3048 fb_new_modelist+0x328/0x440 drivers/video/fbdev/core/fbmem.c:673 store_modes+0x1c9/0x3e0 drivers/video/fbdev/core/fbsysfs.c:113 dev_attr_store+0x55/0x80 drivers/base/core.c:2439 static struct fb_info *fbcon_registered_fb[FB_MAX]; ... static signed char con2fb_map[MAX_NR_CONSOLES]; ... static struct fb_info *fbcon_info_from_console(int console) ... return fbcon_registered_fb[con2fb_map[console]]; If con2fb_map contains a -1 things go wrong here. Instead, return NULL, as callers of fbcon_info_from_console() are trying to compare against existing "info" pointers, so error handling should kick in correctly.
CVE-2025-38069 1 Linux 1 Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: PCI: endpoint: pci-epf-test: Fix double free that causes kernel to oops Fix a kernel oops found while testing the stm32_pcie Endpoint driver with handling of PERST# deassertion: During EP initialization, pci_epf_test_alloc_space() allocates all BARs, which are further freed if epc_set_bar() fails (for instance, due to no free inbound window). However, when pci_epc_set_bar() fails, the error path: pci_epc_set_bar() -> pci_epf_free_space() does not clear the previous assignment to epf_test->reg[bar]. Then, if the host reboots, the PERST# deassertion restarts the BAR allocation sequence with the same allocation failure (no free inbound window), creating a double free situation since epf_test->reg[bar] was deallocated and is still non-NULL. Thus, make sure that pci_epf_alloc_space() and pci_epf_free_space() invocations are symmetric, and as such, set epf_test->reg[bar] to NULL when memory is freed. [kwilczynski: commit log]
CVE-2025-38068 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: crypto: lzo - Fix compression buffer overrun Unlike the decompression code, the compression code in LZO never checked for output overruns. It instead assumes that the caller always provides enough buffer space, disregarding the buffer length provided by the caller. Add a safe compression interface that checks for the end of buffer before each write. Use the safe interface in crypto/lzo.
CVE-2025-37991 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: parisc: Fix double SIGFPE crash Camm noticed that on parisc a SIGFPE exception will crash an application with a second SIGFPE in the signal handler. Dave analyzed it, and it happens because glibc uses a double-word floating-point store to atomically update function descriptors. As a result of lazy binding, we hit a floating-point store in fpe_func almost immediately. When the T bit is set, an assist exception trap occurs when when the co-processor encounters *any* floating-point instruction except for a double store of register %fr0. The latter cancels all pending traps. Let's fix this by clearing the Trap (T) bit in the FP status register before returning to the signal handler in userspace. The issue can be reproduced with this test program: root@parisc:~# cat fpe.c static void fpe_func(int sig, siginfo_t *i, void *v) { sigset_t set; sigemptyset(&set); sigaddset(&set, SIGFPE); sigprocmask(SIG_UNBLOCK, &set, NULL); printf("GOT signal %d with si_code %ld\n", sig, i->si_code); } int main() { struct sigaction action = { .sa_sigaction = fpe_func, .sa_flags = SA_RESTART|SA_SIGINFO }; sigaction(SIGFPE, &action, 0); feenableexcept(FE_OVERFLOW); return printf("%lf\n",1.7976931348623158E308*1.7976931348623158E308); } root@parisc:~# gcc fpe.c -lm root@parisc:~# ./a.out Floating point exception root@parisc:~# strace -f ./a.out execve("./a.out", ["./a.out"], 0xf9ac7034 /* 20 vars */) = 0 getrlimit(RLIMIT_STACK, {rlim_cur=8192*1024, rlim_max=RLIM_INFINITY}) = 0 ... rt_sigaction(SIGFPE, {sa_handler=0x1110a, sa_mask=[], sa_flags=SA_RESTART|SA_SIGINFO}, NULL, 8) = 0 --- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0x1078f} --- --- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0xf8f21237} --- +++ killed by SIGFPE +++ Floating point exception
CVE-2025-37882 1 Linux 1 Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: usb: xhci: Fix isochronous Ring Underrun/Overrun event handling The TRB pointer of these events points at enqueue at the time of error occurrence on xHCI 1.1+ HCs or it's NULL on older ones. By the time we are handling the event, a new TD may be queued at this ring position. I can trigger this race by rising interrupt moderation to increase IRQ handling delay. Similar delay may occur naturally due to system load. If this ever happens after a Missed Service Error, missed TDs will be skipped and the new TD processed as if it matched the event. It could be given back prematurely, risking data loss or buffer UAF by the xHC. Don't complete TDs on xrun events and don't warn if queued TDs don't match the event's TRB pointer, which can be NULL or a link/no-op TRB. Don't warn if there are no queued TDs at all. Now that it's safe, also handle xrun events if the skip flag is clear. This ensures completion of any TD stuck in 'error mid TD' state right before the xrun event, which could happen if a driver submits a finite number of URBs to a buggy HC and then an error occurs on the last TD.
CVE-2025-37879 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.1 High
In the Linux kernel, the following vulnerability has been resolved: 9p/net: fix improper handling of bogus negative read/write replies In p9_client_write() and p9_client_read_once(), if the server incorrectly replies with success but a negative write/read count then we would consider written (negative) <= rsize (positive) because both variables were signed. Make variables unsigned to avoid this problem. The reproducer linked below now fails with the following error instead of a null pointer deref: 9pnet: bogus RWRITE count (4294967295 > 3)
CVE-2025-37839 2 Debian, Linux 2 Debian Linux, Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: jbd2: remove wrong sb->s_sequence check Journal emptiness is not determined by sb->s_sequence == 0 but rather by sb->s_start == 0 (which is set a few lines above). Furthermore 0 is a valid transaction ID so the check can spuriously trigger. Remove the invalid WARN_ON.
CVE-2025-37838 1 Linux 1 Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: HSI: ssi_protocol: Fix use after free vulnerability in ssi_protocol Driver Due to Race Condition In the ssi_protocol_probe() function, &ssi->work is bound with ssip_xmit_work(), In ssip_pn_setup(), the ssip_pn_xmit() function within the ssip_pn_ops structure is capable of starting the work. If we remove the module which will call ssi_protocol_remove() to make a cleanup, it will free ssi through kfree(ssi), while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | ssip_xmit_work ssi_protocol_remove | kfree(ssi); | | struct hsi_client *cl = ssi->cl; | // use ssi Fix it by ensuring that the work is canceled before proceeding with the cleanup in ssi_protocol_remove().
CVE-2025-37738 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ext4: ignore xattrs past end Once inside 'ext4_xattr_inode_dec_ref_all' we should ignore xattrs entries past the 'end' entry. This fixes the following KASAN reported issue: ================================================================== BUG: KASAN: slab-use-after-free in ext4_xattr_inode_dec_ref_all+0xb8c/0xe90 Read of size 4 at addr ffff888012c120c4 by task repro/2065 CPU: 1 UID: 0 PID: 2065 Comm: repro Not tainted 6.13.0-rc2+ #11 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x1fd/0x300 ? tcp_gro_dev_warn+0x260/0x260 ? _printk+0xc0/0x100 ? read_lock_is_recursive+0x10/0x10 ? irq_work_queue+0x72/0xf0 ? __virt_addr_valid+0x17b/0x4b0 print_address_description+0x78/0x390 print_report+0x107/0x1f0 ? __virt_addr_valid+0x17b/0x4b0 ? __virt_addr_valid+0x3ff/0x4b0 ? __phys_addr+0xb5/0x160 ? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90 kasan_report+0xcc/0x100 ? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90 ext4_xattr_inode_dec_ref_all+0xb8c/0xe90 ? ext4_xattr_delete_inode+0xd30/0xd30 ? __ext4_journal_ensure_credits+0x5f0/0x5f0 ? __ext4_journal_ensure_credits+0x2b/0x5f0 ? inode_update_timestamps+0x410/0x410 ext4_xattr_delete_inode+0xb64/0xd30 ? ext4_truncate+0xb70/0xdc0 ? ext4_expand_extra_isize_ea+0x1d20/0x1d20 ? __ext4_mark_inode_dirty+0x670/0x670 ? ext4_journal_check_start+0x16f/0x240 ? ext4_inode_is_fast_symlink+0x2f2/0x3a0 ext4_evict_inode+0xc8c/0xff0 ? ext4_inode_is_fast_symlink+0x3a0/0x3a0 ? do_raw_spin_unlock+0x53/0x8a0 ? ext4_inode_is_fast_symlink+0x3a0/0x3a0 evict+0x4ac/0x950 ? proc_nr_inodes+0x310/0x310 ? trace_ext4_drop_inode+0xa2/0x220 ? _raw_spin_unlock+0x1a/0x30 ? iput+0x4cb/0x7e0 do_unlinkat+0x495/0x7c0 ? try_break_deleg+0x120/0x120 ? 0xffffffff81000000 ? __check_object_size+0x15a/0x210 ? strncpy_from_user+0x13e/0x250 ? getname_flags+0x1dc/0x530 __x64_sys_unlinkat+0xc8/0xf0 do_syscall_64+0x65/0x110 entry_SYSCALL_64_after_hwframe+0x67/0x6f RIP: 0033:0x434ffd Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 8 RSP: 002b:00007ffc50fa7b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000107 RAX: ffffffffffffffda RBX: 00007ffc50fa7e18 RCX: 0000000000434ffd RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000005 RBP: 00007ffc50fa7be0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 R13: 00007ffc50fa7e08 R14: 00000000004bbf30 R15: 0000000000000001 </TASK> The buggy address belongs to the object at ffff888012c12000 which belongs to the cache filp of size 360 The buggy address is located 196 bytes inside of freed 360-byte region [ffff888012c12000, ffff888012c12168) The buggy address belongs to the physical page: page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x12c12 head: order:1 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0x40(head|node=0|zone=0) page_type: f5(slab) raw: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004 raw: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000 head: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004 head: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000 head: 0000000000000001 ffffea00004b0481 ffffffffffffffff 0000000000000000 head: 0000000000000002 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff888012c11f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888012c12000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb > ffff888012c12080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888012c12100: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc ffff888012c12180: fc fc fc fc fc fc fc fc fc ---truncated---
CVE-2025-21993 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-02 7.1 High
In the Linux kernel, the following vulnerability has been resolved: iscsi_ibft: Fix UBSAN shift-out-of-bounds warning in ibft_attr_show_nic() When performing an iSCSI boot using IPv6, iscsistart still reads the /sys/firmware/ibft/ethernetX/subnet-mask entry. Since the IPv6 prefix length is 64, this causes the shift exponent to become negative, triggering a UBSAN warning. As the concept of a subnet mask does not apply to IPv6, the value is set to ~0 to suppress the warning message.
CVE-2025-21969 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix slab-use-after-free Read in l2cap_send_cmd After the hci sync command releases l2cap_conn, the hci receive data work queue references the released l2cap_conn when sending to the upper layer. Add hci dev lock to the hci receive data work queue to synchronize the two. [1] BUG: KASAN: slab-use-after-free in l2cap_send_cmd+0x187/0x8d0 net/bluetooth/l2cap_core.c:954 Read of size 8 at addr ffff8880271a4000 by task kworker/u9:2/5837 CPU: 0 UID: 0 PID: 5837 Comm: kworker/u9:2 Not tainted 6.13.0-rc5-syzkaller-00163-gab75170520d4 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: hci1 hci_rx_work Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 l2cap_build_cmd net/bluetooth/l2cap_core.c:2964 [inline] l2cap_send_cmd+0x187/0x8d0 net/bluetooth/l2cap_core.c:954 l2cap_sig_send_rej net/bluetooth/l2cap_core.c:5502 [inline] l2cap_sig_channel net/bluetooth/l2cap_core.c:5538 [inline] l2cap_recv_frame+0x221f/0x10db0 net/bluetooth/l2cap_core.c:6817 hci_acldata_packet net/bluetooth/hci_core.c:3797 [inline] hci_rx_work+0x508/0xdb0 net/bluetooth/hci_core.c:4040 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Allocated by task 5837: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329 kmalloc_noprof include/linux/slab.h:901 [inline] kzalloc_noprof include/linux/slab.h:1037 [inline] l2cap_conn_add+0xa9/0x8e0 net/bluetooth/l2cap_core.c:6860 l2cap_connect_cfm+0x115/0x1090 net/bluetooth/l2cap_core.c:7239 hci_connect_cfm include/net/bluetooth/hci_core.h:2057 [inline] hci_remote_features_evt+0x68e/0xac0 net/bluetooth/hci_event.c:3726 hci_event_func net/bluetooth/hci_event.c:7473 [inline] hci_event_packet+0xac2/0x1540 net/bluetooth/hci_event.c:7525 hci_rx_work+0x3f3/0xdb0 net/bluetooth/hci_core.c:4035 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 Freed by task 54: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2353 [inline] slab_free mm/slub.c:4613 [inline] kfree+0x196/0x430 mm/slub.c:4761 l2cap_connect_cfm+0xcc/0x1090 net/bluetooth/l2cap_core.c:7235 hci_connect_cfm include/net/bluetooth/hci_core.h:2057 [inline] hci_conn_failed+0x287/0x400 net/bluetooth/hci_conn.c:1266 hci_abort_conn_sync+0x56c/0x11f0 net/bluetooth/hci_sync.c:5603 hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entr ---truncated---
CVE-2025-21772 1 Linux 1 Linux Kernel 2026-01-02 7.8 High
In the Linux kernel, the following vulnerability has been resolved: partitions: mac: fix handling of bogus partition table Fix several issues in partition probing: - The bailout for a bad partoffset must use put_dev_sector(), since the preceding read_part_sector() succeeded. - If the partition table claims a silly sector size like 0xfff bytes (which results in partition table entries straddling sector boundaries), bail out instead of accessing out-of-bounds memory. - We must not assume that the partition table contains proper NUL termination - use strnlen() and strncmp() instead of strlen() and strcmp().
CVE-2022-50881 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: Fix use-after-free in ath9k_hif_usb_disconnect() This patch fixes a use-after-free in ath9k that occurs in ath9k_hif_usb_disconnect() when ath9k_destroy_wmi() is trying to access 'drv_priv' that has already been freed by ieee80211_free_hw(), called by ath9k_htc_hw_deinit(). The patch moves ath9k_destroy_wmi() before ieee80211_free_hw(). Note that urbs from the driver should be killed before freeing 'wmi' with ath9k_destroy_wmi() as their callbacks will access 'wmi'. Found by a modified version of syzkaller. ================================================================== BUG: KASAN: use-after-free in ath9k_destroy_wmi+0x38/0x40 Read of size 8 at addr ffff8881069132a0 by task kworker/0:1/7 CPU: 0 PID: 7 Comm: kworker/0:1 Tainted: G O 5.14.0+ #131 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x8e/0xd1 print_address_description.constprop.0.cold+0x93/0x334 ? ath9k_destroy_wmi+0x38/0x40 ? ath9k_destroy_wmi+0x38/0x40 kasan_report.cold+0x83/0xdf ? ath9k_destroy_wmi+0x38/0x40 ath9k_destroy_wmi+0x38/0x40 ath9k_hif_usb_disconnect+0x329/0x3f0 ? ath9k_hif_usb_suspend+0x120/0x120 ? usb_disable_interface+0xfc/0x180 usb_unbind_interface+0x19b/0x7e0 ? usb_autoresume_device+0x50/0x50 device_release_driver_internal+0x44d/0x520 bus_remove_device+0x2e5/0x5a0 device_del+0x5b2/0xe30 ? __device_link_del+0x370/0x370 ? usb_remove_ep_devs+0x43/0x80 ? remove_intf_ep_devs+0x112/0x1a0 usb_disable_device+0x1e3/0x5a0 usb_disconnect+0x267/0x870 hub_event+0x168d/0x3950 ? rcu_read_lock_sched_held+0xa1/0xd0 ? hub_port_debounce+0x2e0/0x2e0 ? check_irq_usage+0x860/0xf20 ? drain_workqueue+0x281/0x360 ? lock_release+0x640/0x640 ? rcu_read_lock_sched_held+0xa1/0xd0 ? rcu_read_lock_bh_held+0xb0/0xb0 ? lockdep_hardirqs_on_prepare+0x273/0x3e0 process_one_work+0x92b/0x1460 ? pwq_dec_nr_in_flight+0x330/0x330 ? rwlock_bug.part.0+0x90/0x90 worker_thread+0x95/0xe00 ? __kthread_parkme+0x115/0x1e0 ? process_one_work+0x1460/0x1460 kthread+0x3a1/0x480 ? set_kthread_struct+0x120/0x120 ret_from_fork+0x1f/0x30 The buggy address belongs to the page: page:ffffea00041a44c0 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x106913 flags: 0x200000000000000(node=0|zone=2) raw: 0200000000000000 0000000000000000 dead000000000122 0000000000000000 raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected page_owner tracks the page as freed page last allocated via order 3, migratetype Unmovable, gfp_mask 0x40dc0(GFP_KERNEL|__GFP_COMP|__GFP_ZERO), pid 7, ts 38347963444, free_ts 41399957635 prep_new_page+0x1aa/0x240 get_page_from_freelist+0x159a/0x27c0 __alloc_pages+0x2da/0x6a0 alloc_pages+0xec/0x1e0 kmalloc_order+0x39/0xf0 kmalloc_order_trace+0x19/0x120 __kmalloc+0x308/0x390 wiphy_new_nm+0x6f5/0x1dd0 ieee80211_alloc_hw_nm+0x36d/0x2230 ath9k_htc_probe_device+0x9d/0x1e10 ath9k_htc_hw_init+0x34/0x50 ath9k_hif_usb_firmware_cb+0x25f/0x4e0 request_firmware_work_func+0x131/0x240 process_one_work+0x92b/0x1460 worker_thread+0x95/0xe00 kthread+0x3a1/0x480 page last free stack trace: free_pcp_prepare+0x3d3/0x7f0 free_unref_page+0x1e/0x3d0 device_release+0xa4/0x240 kobject_put+0x186/0x4c0 put_device+0x20/0x30 ath9k_htc_disconnect_device+0x1cf/0x2c0 ath9k_htc_hw_deinit+0x26/0x30 ath9k_hif_usb_disconnect+0x2d9/0x3f0 usb_unbind_interface+0x19b/0x7e0 device_release_driver_internal+0x44d/0x520 bus_remove_device+0x2e5/0x5a0 device_del+0x5b2/0xe30 usb_disable_device+0x1e3/0x5a0 usb_disconnect+0x267/0x870 hub_event+0x168d/0x3950 process_one_work+0x92b/0x1460 Memory state around the buggy address: ffff888106913180: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff888106913200: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff888 ---truncated---
CVE-2022-50871 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: Fix qmi_msg_handler data structure initialization qmi_msg_handler is required to be null terminated by QMI module. There might be a case where a handler for a msg id is not present in the handlers array which can lead to infinite loop while searching the handler and therefore out of bound access in qmi_invoke_handler(). Hence update the initialization in qmi_msg_handler data structure. Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.5.0.1-01100-QCAHKSWPL_SILICONZ-1
CVE-2022-50863 1 Linux 1 Linux Kernel 2026-01-02 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: free unused skb to prevent memory leak This avoid potential memory leak under power saving mode.