| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The URL pattern of "" (the empty string) which exactly maps to the context root was not correctly handled in Apache Tomcat 9.0.0.M1 to 9.0.4, 8.5.0 to 8.5.27, 8.0.0.RC1 to 8.0.49 and 7.0.0 to 7.0.84 when used as part of a security constraint definition. This caused the constraint to be ignored. It was, therefore, possible for unauthorised users to gain access to web application resources that should have been protected. Only security constraints with a URL pattern of the empty string were affected. |
| A specially crafted HTTP request header could have crashed the Apache HTTP Server prior to version 2.4.30 due to an out of bound read while preparing data to be cached in shared memory. It could be used as a Denial of Service attack against users of mod_cache_socache. The vulnerability is considered as low risk since mod_cache_socache is not widely used, mod_cache_disk is not concerned by this vulnerability. |
| When an HTTP/2 stream was destroyed after being handled, the Apache HTTP Server prior to version 2.4.30 could have written a NULL pointer potentially to an already freed memory. The memory pools maintained by the server make this vulnerability hard to trigger in usual configurations, the reporter and the team could not reproduce it outside debug builds, so it is classified as low risk. |
| A specially crafted request could have crashed the Apache HTTP Server prior to version 2.4.30, due to an out of bound access after a size limit is reached by reading the HTTP header. This vulnerability is considered very hard if not impossible to trigger in non-debug mode (both log and build level), so it is classified as low risk for common server usage. |
| In Apache Ignite 2.3 or earlier, the serialization mechanism does not have a list of classes allowed for serialization/deserialization, which makes it possible to run arbitrary code when 3-rd party vulnerable classes are present in Ignite classpath. The vulnerability can be exploited if the one sends a specially prepared form of a serialized object to one of the deserialization endpoints of some Ignite components - discovery SPI, Ignite persistence, Memcached endpoint, socket steamer. |
| In Apache Kafka 0.9.0.0 to 0.9.0.1, 0.10.0.0 to 0.10.2.1, 0.11.0.0 to 0.11.0.2, and 1.0.0, authenticated Kafka users may perform action reserved for the Broker via a manually created fetch request interfering with data replication, resulting in data loss. |
| In Apache httpd 2.4.0 to 2.4.29, when mod_session is configured to forward its session data to CGI applications (SessionEnv on, not the default), a remote user may influence their content by using a "Session" header. This comes from the "HTTP_SESSION" variable name used by mod_session to forward its data to CGIs, since the prefix "HTTP_" is also used by the Apache HTTP Server to pass HTTP header fields, per CGI specifications. |
| Spring Framework, versions 5.0 prior to 5.0.5 and versions 4.3 prior to 4.3.16 and older unsupported versions, allow applications to expose STOMP over WebSocket endpoints with a simple, in-memory STOMP broker through the spring-messaging module. A malicious user (or attacker) can craft a message to the broker that can lead to a remote code execution attack. This CVE addresses the partial fix for CVE-2018-1270 in the 4.3.x branch of the Spring Framework. |
| Spring Framework, versions 5.0 prior to 5.0.5 and versions 4.3 prior to 4.3.15 and older unsupported versions, provide client-side support for multipart requests. When Spring MVC or Spring WebFlux server application (server A) receives input from a remote client, and then uses that input to make a multipart request to another server (server B), it can be exposed to an attack, where an extra multipart is inserted in the content of the request from server A, causing server B to use the wrong value for a part it expects. This could to lead privilege escalation, for example, if the part content represents a username or user roles. |
| Spring Framework, versions 5.0 prior to 5.0.5 and versions 4.3 prior to 4.3.15 and older unsupported versions, allow applications to configure Spring MVC to serve static resources (e.g. CSS, JS, images). When static resources are served from a file system on Windows (as opposed to the classpath, or the ServletContext), a malicious user can send a request using a specially crafted URL that can lead a directory traversal attack. |
| Spring Framework, versions 5.0 prior to 5.0.5 and versions 4.3 prior to 4.3.15 and older unsupported versions, allow applications to expose STOMP over WebSocket endpoints with a simple, in-memory STOMP broker through the spring-messaging module. A malicious user (or attacker) can craft a message to the broker that can lead to a remote code execution attack. |
| Spring Security OAuth, versions 2.3 prior to 2.3.3, 2.2 prior to 2.2.2, 2.1 prior to 2.1.2, 2.0 prior to 2.0.15 and older unsupported versions contains a remote code execution vulnerability. A malicious user or attacker can craft an authorization request to the authorization endpoint that can lead to remote code execution when the resource owner is forwarded to the approval endpoint. |
| Spring Data Commons, versions 1.13 prior to 1.13.12 and 2.0 prior to 2.0.7, used in combination with XMLBeam 1.4.14 or earlier versions, contains a property binder vulnerability caused by improper restriction of XML external entity references as underlying library XMLBeam does not restrict external reference expansion. An unauthenticated remote malicious user can supply specially crafted request parameters against Spring Data's projection-based request payload binding to access arbitrary files on the system. |
| Spring Framework version 5.0.5 when used in combination with any versions of Spring Security contains an authorization bypass when using method security. An unauthorized malicious user can gain unauthorized access to methods that should be restricted. |
| Spring Framework, versions 5.0.x prior to 5.0.6, versions 4.3.x prior to 4.3.17, and older unsupported versions allows applications to expose STOMP over WebSocket endpoints with a simple, in-memory STOMP broker through the spring-messaging module. A malicious user (or attacker) can craft a message to the broker that can lead to a regular expression, denial of service attack. |
| Spring Security (Spring Security 4.1.x before 4.1.5, 4.2.x before 4.2.4, and 5.0.x before 5.0.1; and Spring Framework 4.3.x before 4.3.14 and 5.0.x before 5.0.3) does not consider URL path parameters when processing security constraints. By adding a URL path parameter with special encodings, an attacker may be able to bypass a security constraint. The root cause of this issue is a lack of clarity regarding the handling of path parameters in the Servlet Specification. Some Servlet containers include path parameters in the value returned for getPathInfo() and some do not. Spring Security uses the value returned by getPathInfo() as part of the process of mapping requests to security constraints. In this particular attack, different character encodings used in path parameters allows secured Spring MVC static resource URLs to be bypassed. |
| A flaw was found in the way samba before 4.7.9 and 4.8.4 allowed the use of weak NTLMv1 authentication even when NTLMv1 was explicitly disabled. A man-in-the-middle attacker could use this flaw to read the credential and other details passed between the samba server and client. |
| Infinispan permits improper deserialization of trusted data via XML and JSON transcoders under certain server configurations. A user with authenticated access to the server could send a malicious object to a cache configured to accept certain types of objects, achieving code execution and possible further attacks. Versions 9.0.3.Final, 9.1.7.Final, 8.2.10.Final, 9.2.2.Final, 9.3.0.Alpha1 are believed to be affected. |
| Linux kernel before version 4.16-rc7 is vulnerable to a null pointer dereference in dccp_write_xmit() function in net/dccp/output.c in that allows a local user to cause a denial of service by a number of certain crafted system calls. |
| A flaw was found in the way signature calculation was handled by cephx authentication protocol. An attacker having access to ceph cluster network who is able to alter the message payload was able to bypass signature checks done by cephx protocol. Ceph branches master, mimic, luminous and jewel are believed to be vulnerable. |