| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Fickling is a Python pickling decompiler and static analyzer. Versions prior to 0.1.6 are missing `marshal` and `types` from the block list of unsafe module imports. Fickling started blocking both modules to address this issue. This allows an attacker to craft a malicious pickle file that can bypass fickling since it misses detections for `types.FunctionType` and `marshal.loads`. A user who deserializes such a file, believing it to be safe, would inadvertently execute arbitrary code on their system. This impacts any user or system that uses Fickling to vet pickle files for security issues. The issue was fixed in version 0.1.6. |
| Fickling is a Python pickling decompiler and static analyzer. Versions prior to 0.1.6 had a bypass caused by `pty` missing from the block list of unsafe module imports. This led to unsafe pickles based on `pty.spawn()` being incorrectly flagged as `LIKELY_SAFE`, and was fixed in version 0.1.6. This impacted any user or system that used Fickling to vet pickle files for security issues. |
| An issue was discovered in K7 Ultimate Security 17.0.2045. A Local Privilege Escalation (LPE) vulnerability in the K7 Ultimate Security antivirus can be exploited by a local unprivileged user on default installations of the product. Insecure access to a named pipe allows unprivileged users to edit any registry key, leading to a full compromise as SYSTEM. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix crash in process_v2_sparse_read() for encrypted directories
The crash in process_v2_sparse_read() for fscrypt-encrypted directories
has been reported. Issue takes place for Ceph msgr2 protocol in secure
mode. It can be reproduced by the steps:
sudo mount -t ceph :/ /mnt/cephfs/ -o name=admin,fs=cephfs,ms_mode=secure
(1) mkdir /mnt/cephfs/fscrypt-test-3
(2) cp area_decrypted.tar /mnt/cephfs/fscrypt-test-3
(3) fscrypt encrypt --source=raw_key --key=./my.key /mnt/cephfs/fscrypt-test-3
(4) fscrypt lock /mnt/cephfs/fscrypt-test-3
(5) fscrypt unlock --key=my.key /mnt/cephfs/fscrypt-test-3
(6) cat /mnt/cephfs/fscrypt-test-3/area_decrypted.tar
(7) Issue has been triggered
[ 408.072247] ------------[ cut here ]------------
[ 408.072251] WARNING: CPU: 1 PID: 392 at net/ceph/messenger_v2.c:865
ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072267] Modules linked in: intel_rapl_msr intel_rapl_common
intel_uncore_frequency_common intel_pmc_core pmt_telemetry pmt_discovery
pmt_class intel_pmc_ssram_telemetry intel_vsec kvm_intel joydev kvm irqbypass
polyval_clmulni ghash_clmulni_intel aesni_intel rapl input_leds psmouse
serio_raw i2c_piix4 vga16fb bochs vgastate i2c_smbus floppy mac_hid qemu_fw_cfg
pata_acpi sch_fq_codel rbd msr parport_pc ppdev lp parport efi_pstore
[ 408.072304] CPU: 1 UID: 0 PID: 392 Comm: kworker/1:3 Not tainted 6.17.0-rc7+
[ 408.072307] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.17.0-5.fc42 04/01/2014
[ 408.072310] Workqueue: ceph-msgr ceph_con_workfn
[ 408.072314] RIP: 0010:ceph_con_v2_try_read+0x4b39/0x72f0
[ 408.072317] Code: c7 c1 20 f0 d4 ae 50 31 d2 48 c7 c6 60 27 d5 ae 48 c7 c7 f8
8e 6f b0 68 60 38 d5 ae e8 00 47 61 fe 48 83 c4 18 e9 ac fc ff ff <0f> 0b e9 06
fe ff ff 4c 8b 9d 98 fd ff ff 0f 84 64 e7 ff ff 89 85
[ 408.072319] RSP: 0018:ffff88811c3e7a30 EFLAGS: 00010246
[ 408.072322] RAX: ffffed1024874c6f RBX: ffffea00042c2b40 RCX: 0000000000000f38
[ 408.072324] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
[ 408.072325] RBP: ffff88811c3e7ca8 R08: 0000000000000000 R09: 00000000000000c8
[ 408.072326] R10: 00000000000000c8 R11: 0000000000000000 R12: 00000000000000c8
[ 408.072327] R13: dffffc0000000000 R14: ffff8881243a6030 R15: 0000000000003000
[ 408.072329] FS: 0000000000000000(0000) GS:ffff88823eadf000(0000)
knlGS:0000000000000000
[ 408.072331] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 408.072332] CR2: 000000c0003c6000 CR3: 000000010c106005 CR4: 0000000000772ef0
[ 408.072336] PKRU: 55555554
[ 408.072337] Call Trace:
[ 408.072338] <TASK>
[ 408.072340] ? sched_clock_noinstr+0x9/0x10
[ 408.072344] ? __pfx_ceph_con_v2_try_read+0x10/0x10
[ 408.072347] ? _raw_spin_unlock+0xe/0x40
[ 408.072349] ? finish_task_switch.isra.0+0x15d/0x830
[ 408.072353] ? __kasan_check_write+0x14/0x30
[ 408.072357] ? mutex_lock+0x84/0xe0
[ 408.072359] ? __pfx_mutex_lock+0x10/0x10
[ 408.072361] ceph_con_workfn+0x27e/0x10e0
[ 408.072364] ? metric_delayed_work+0x311/0x2c50
[ 408.072367] process_one_work+0x611/0xe20
[ 408.072371] ? __kasan_check_write+0x14/0x30
[ 408.072373] worker_thread+0x7e3/0x1580
[ 408.072375] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 408.072378] ? __pfx_worker_thread+0x10/0x10
[ 408.072381] kthread+0x381/0x7a0
[ 408.072383] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 408.072385] ? __pfx_kthread+0x10/0x10
[ 408.072387] ? __kasan_check_write+0x14/0x30
[ 408.072389] ? recalc_sigpending+0x160/0x220
[ 408.072392] ? _raw_spin_unlock_irq+0xe/0x50
[ 408.072394] ? calculate_sigpending+0x78/0xb0
[ 408.072395] ? __pfx_kthread+0x10/0x10
[ 408.072397] ret_from_fork+0x2b6/0x380
[ 408.072400] ? __pfx_kthread+0x10/0x10
[ 408.072402] ret_from_fork_asm+0x1a/0x30
[ 408.072406] </TASK>
[ 408.072407] ---[ end trace 0000000000000000 ]---
[ 408.072418] Oops: general protection fault, probably for non-canonical
address 0xdffffc00000000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: fix potential use-after-free in have_mon_and_osd_map()
The wait loop in __ceph_open_session() can race with the client
receiving a new monmap or osdmap shortly after the initial map is
received. Both ceph_monc_handle_map() and handle_one_map() install
a new map immediately after freeing the old one
kfree(monc->monmap);
monc->monmap = monmap;
ceph_osdmap_destroy(osdc->osdmap);
osdc->osdmap = newmap;
under client->monc.mutex and client->osdc.lock respectively, but
because neither is taken in have_mon_and_osd_map() it's possible for
client->monc.monmap->epoch and client->osdc.osdmap->epoch arms in
client->monc.monmap && client->monc.monmap->epoch &&
client->osdc.osdmap && client->osdc.osdmap->epoch;
condition to dereference an already freed map. This happens to be
reproducible with generic/395 and generic/397 with KASAN enabled:
BUG: KASAN: slab-use-after-free in have_mon_and_osd_map+0x56/0x70
Read of size 4 at addr ffff88811012d810 by task mount.ceph/13305
CPU: 2 UID: 0 PID: 13305 Comm: mount.ceph Not tainted 6.14.0-rc2-build2+ #1266
...
Call Trace:
<TASK>
have_mon_and_osd_map+0x56/0x70
ceph_open_session+0x182/0x290
ceph_get_tree+0x333/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
Allocated by task 13305:
ceph_osdmap_alloc+0x16/0x130
ceph_osdc_init+0x27a/0x4c0
ceph_create_client+0x153/0x190
create_fs_client+0x50/0x2a0
ceph_get_tree+0xff/0x680
vfs_get_tree+0x49/0x180
do_new_mount+0x1a3/0x2d0
path_mount+0x6dd/0x730
do_mount+0x99/0xe0
__do_sys_mount+0x141/0x180
do_syscall_64+0x9f/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 9475:
kfree+0x212/0x290
handle_one_map+0x23c/0x3b0
ceph_osdc_handle_map+0x3c9/0x590
mon_dispatch+0x655/0x6f0
ceph_con_process_message+0xc3/0xe0
ceph_con_v1_try_read+0x614/0x760
ceph_con_workfn+0x2de/0x650
process_one_work+0x486/0x7c0
process_scheduled_works+0x73/0x90
worker_thread+0x1c8/0x2a0
kthread+0x2ec/0x300
ret_from_fork+0x24/0x40
ret_from_fork_asm+0x1a/0x30
Rewrite the wait loop to check the above condition directly with
client->monc.mutex and client->osdc.lock taken as appropriate. While
at it, improve the timeout handling (previously mount_timeout could be
exceeded in case wait_event_interruptible_timeout() slept more than
once) and access client->auth_err under client->monc.mutex to match
how it's set in finish_auth().
monmap_show() and osdmap_show() now take the respective lock before
accessing the map as well. |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: prevent potential out-of-bounds writes in handle_auth_session_key()
The len field originates from untrusted network packets. Boundary
checks have been added to prevent potential out-of-bounds writes when
decrypting the connection secret or processing service tickets.
[ idryomov: changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
libceph: replace BUG_ON with bounds check for map->max_osd
OSD indexes come from untrusted network packets. Boundary checks are
added to validate these against map->max_osd.
[ idryomov: drop BUG_ON in ceph_get_primary_affinity(), minor cosmetic
edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/radeon: delete radeon_fence_process in is_signaled, no deadlock
Delete the attempt to progress the queue when checking if fence is
signaled. This avoids deadlock.
dma-fence_ops::signaled can be called with the fence lock in unknown
state. For radeon, the fence lock is also the wait queue lock. This can
cause a self deadlock when signaled() tries to make forward progress on
the wait queue. But advancing the queue is unneeded because incorrectly
returning false from signaled() is perfectly acceptable.
(cherry picked from commit 527ba26e50ec2ca2be9c7c82f3ad42998a75d0db) |
| In the Linux kernel, the following vulnerability has been resolved:
udp_tunnel: use netdev_warn() instead of netdev_WARN()
netdev_WARN() uses WARN/WARN_ON to print a backtrace along with
file and line information. In this case, udp_tunnel_nic_register()
returning an error is just a failed operation, not a kernel bug.
udp_tunnel_nic_register() can fail due to a memory allocation
failure (kzalloc() or udp_tunnel_nic_alloc()).
This is a normal runtime error and not a kernel bug.
Replace netdev_WARN() with netdev_warn() accordingly. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: use dst_dev_rcu() in tcp_fastopen_active_disable_ofo_check()
Use RCU to avoid a pair of atomic operations and a potential
UAF on dst_dev()->flags. |
| In the Linux kernel, the following vulnerability has been resolved:
nfs4_setup_readdir(): insufficient locking for ->d_parent->d_inode dereferencing
Theoretically it's an oopsable race, but I don't believe one can manage
to hit it on real hardware; might become doable on a KVM, but it still
won't be easy to attack.
Anyway, it's easy to deal with - since xdr_encode_hyper() is just a call of
put_unaligned_be64(), we can put that under ->d_lock and be done with that. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv6: fix field-spanning memcpy warning in AH output
Fix field-spanning memcpy warnings in ah6_output() and
ah6_output_done() where extension headers are copied to/from IPv6
address fields, triggering fortify-string warnings about writes beyond
the 16-byte address fields.
memcpy: detected field-spanning write (size 40) of single field "&top_iph->saddr" at net/ipv6/ah6.c:439 (size 16)
WARNING: CPU: 0 PID: 8838 at net/ipv6/ah6.c:439 ah6_output+0xe7e/0x14e0 net/ipv6/ah6.c:439
The warnings are false positives as the extension headers are
intentionally placed after the IPv6 header in memory. Fix by properly
copying addresses and extension headers separately, and introduce
helper functions to avoid code duplication. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: mte: Do not warn if the page is already tagged in copy_highpage()
The arm64 copy_highpage() assumes that the destination page is newly
allocated and not MTE-tagged (PG_mte_tagged unset) and warns
accordingly. However, following commit 060913999d7a ("mm: migrate:
support poisoned recover from migrate folio"), folio_mc_copy() is called
before __folio_migrate_mapping(). If the latter fails (-EAGAIN), the
copy will be done again to the same destination page. Since
copy_highpage() already set the PG_mte_tagged flag, this second copy
will warn.
Replace the WARN_ON_ONCE(page already tagged) in the arm64
copy_highpage() with a comment. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: storage: sddr55: Reject out-of-bound new_pba
Discovered by Atuin - Automated Vulnerability Discovery Engine.
new_pba comes from the status packet returned after each write.
A bogus device could report values beyond the block count derived
from info->capacity, letting the driver walk off the end of
pba_to_lba[] and corrupt heap memory.
Reject PBAs that exceed the computed block count and fail the
transfer so we avoid touching out-of-range mapping entries. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Do not share the name pointer between components
By sharing 'name' directly, tearing down components may lead to
use-after-free errors. Duplicate the name to avoid that.
At the same time, update the order of operations - since commit
cee28113db17 ("ASoC: dmaengine_pcm: Allow passing component name via
config") the framework does not override component->name if set before
invoking the initializer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gpusvm: fix hmm_pfn_to_map_order() usage
Handle the case where the hmm range partially covers a huge page (like
2M), otherwise we can potentially end up doing something nasty like
mapping memory which is outside the range, and maybe not even mapped by
the mm. Fix is based on the xe userptr code, which in a future patch
will directly use gpusvm, so needs alignment here.
v2:
- Add kernel-doc (Matt B)
- s/fls/ilog2/ (Thomas) |
| In the Linux kernel, the following vulnerability has been resolved:
fbcon: Set fb_display[i]->mode to NULL when the mode is released
Recently, we discovered the following issue through syzkaller:
BUG: KASAN: slab-use-after-free in fb_mode_is_equal+0x285/0x2f0
Read of size 4 at addr ff11000001b3c69c by task syz.xxx
...
Call Trace:
<TASK>
dump_stack_lvl+0xab/0xe0
print_address_description.constprop.0+0x2c/0x390
print_report+0xb9/0x280
kasan_report+0xb8/0xf0
fb_mode_is_equal+0x285/0x2f0
fbcon_mode_deleted+0x129/0x180
fb_set_var+0xe7f/0x11d0
do_fb_ioctl+0x6a0/0x750
fb_ioctl+0xe0/0x140
__x64_sys_ioctl+0x193/0x210
do_syscall_64+0x5f/0x9c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Based on experimentation and analysis, during framebuffer unregistration,
only the memory of fb_info->modelist is freed, without setting the
corresponding fb_display[i]->mode to NULL for the freed modes. This leads
to UAF issues during subsequent accesses. Here's an example of reproduction
steps:
1. With /dev/fb0 already registered in the system, load a kernel module
to register a new device /dev/fb1;
2. Set fb1's mode to the global fb_display[] array (via FBIOPUT_CON2FBMAP);
3. Switch console from fb to VGA (to allow normal rmmod of the ko);
4. Unload the kernel module, at this point fb1's modelist is freed, leaving
a wild pointer in fb_display[];
5. Trigger the bug via system calls through fb0 attempting to delete a mode
from fb0.
Add a check in do_unregister_framebuffer(): if the mode to be freed exists
in fb_display[], set the corresponding mode pointer to NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: bitblit: bound-check glyph index in bit_putcs*
bit_putcs_aligned()/unaligned() derived the glyph pointer from the
character value masked by 0xff/0x1ff, which may exceed the actual font's
glyph count and read past the end of the built-in font array.
Clamp the index to the actual glyph count before computing the address.
This fixes a global out-of-bounds read reported by syzbot. |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Verify inode mode when loading from disk
The inode mode loaded from corrupted disk can be invalid. Do like what
commit 0a9e74051313 ("isofs: Verify inode mode when loading from disk")
does. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: bcsp: receive data only if registered
Currently, bcsp_recv() can be called even when the BCSP protocol has not
been registered. This leads to a NULL pointer dereference, as shown in
the following stack trace:
KASAN: null-ptr-deref in range [0x0000000000000108-0x000000000000010f]
RIP: 0010:bcsp_recv+0x13d/0x1740 drivers/bluetooth/hci_bcsp.c:590
Call Trace:
<TASK>
hci_uart_tty_receive+0x194/0x220 drivers/bluetooth/hci_ldisc.c:627
tiocsti+0x23c/0x2c0 drivers/tty/tty_io.c:2290
tty_ioctl+0x626/0xde0 drivers/tty/tty_io.c:2706
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
To prevent this, ensure that the HCI_UART_REGISTERED flag is set before
processing received data. If the protocol is not registered, return
-EUNATCH. |