Search Results (16621 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54137 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vfio/type1: fix cap_migration information leak Fix an information leak where an uninitialized hole in struct vfio_iommu_type1_info_cap_migration on the stack is exposed to userspace. The definition of struct vfio_iommu_type1_info_cap_migration contains a hole as shown in this pahole(1) output: struct vfio_iommu_type1_info_cap_migration { struct vfio_info_cap_header header; /* 0 8 */ __u32 flags; /* 8 4 */ /* XXX 4 bytes hole, try to pack */ __u64 pgsize_bitmap; /* 16 8 */ __u64 max_dirty_bitmap_size; /* 24 8 */ /* size: 32, cachelines: 1, members: 4 */ /* sum members: 28, holes: 1, sum holes: 4 */ /* last cacheline: 32 bytes */ }; The cap_mig variable is filled in without initializing the hole: static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu, struct vfio_info_cap *caps) { struct vfio_iommu_type1_info_cap_migration cap_mig; cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION; cap_mig.header.version = 1; cap_mig.flags = 0; /* support minimum pgsize */ cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap); cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX; return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig)); } The structure is then copied to a temporary location on the heap. At this point it's already too late and ioctl(VFIO_IOMMU_GET_INFO) copies it to userspace later: int vfio_info_add_capability(struct vfio_info_cap *caps, struct vfio_info_cap_header *cap, size_t size) { struct vfio_info_cap_header *header; header = vfio_info_cap_add(caps, size, cap->id, cap->version); if (IS_ERR(header)) return PTR_ERR(header); memcpy(header + 1, cap + 1, size - sizeof(*header)); return 0; } This issue was found by code inspection.
CVE-2023-54149 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dsa: avoid suspicious RCU usage for synced VLAN-aware MAC addresses When using the felix driver (the only one which supports UC filtering and MC filtering) as a DSA master for a random other DSA switch, one can see the following stack trace when the downstream switch ports join a VLAN-aware bridge: ============================= WARNING: suspicious RCU usage ----------------------------- net/8021q/vlan_core.c:238 suspicious rcu_dereference_protected() usage! stack backtrace: Workqueue: dsa_ordered dsa_slave_switchdev_event_work Call trace: lockdep_rcu_suspicious+0x170/0x210 vlan_for_each+0x8c/0x188 dsa_slave_sync_uc+0x128/0x178 __hw_addr_sync_dev+0x138/0x158 dsa_slave_set_rx_mode+0x58/0x70 __dev_set_rx_mode+0x88/0xa8 dev_uc_add+0x74/0xa0 dsa_port_bridge_host_fdb_add+0xec/0x180 dsa_slave_switchdev_event_work+0x7c/0x1c8 process_one_work+0x290/0x568 What it's saying is that vlan_for_each() expects rtnl_lock() context and it's not getting it, when it's called from the DSA master's ndo_set_rx_mode(). The caller of that - dsa_slave_set_rx_mode() - is the slave DSA interface's dsa_port_bridge_host_fdb_add() which comes from the deferred dsa_slave_switchdev_event_work(). We went to great lengths to avoid the rtnl_lock() context in that call path in commit 0faf890fc519 ("net: dsa: drop rtnl_lock from dsa_slave_switchdev_event_work"), and calling rtnl_lock() is simply not an option due to the possibility of deadlocking when calling dsa_flush_workqueue() from the call paths that do hold rtnl_lock() - basically all of them. So, when the DSA master calls vlan_for_each() from its ndo_set_rx_mode(), the state of the 8021q driver on this device is really not protected from concurrent access by anything. Looking at net/8021q/, I don't think that vlan_info->vid_list was particularly designed with RCU traversal in mind, so introducing an RCU read-side form of vlan_for_each() - vlan_for_each_rcu() - won't be so easy, and it also wouldn't be exactly what we need anyway. In general I believe that the solution isn't in net/8021q/ anyway; vlan_for_each() is not cut out for this task. DSA doesn't need rtnl_lock() to be held per se - since it's not a netdev state change that we're blocking, but rather, just concurrent additions/removals to a VLAN list. We don't even need sleepable context - the callback of vlan_for_each() just schedules deferred work. The proposed escape is to remove the dependency on vlan_for_each() and to open-code a non-sleepable, rtnl-free alternative to that, based on copies of the VLAN list modified from .ndo_vlan_rx_add_vid() and .ndo_vlan_rx_kill_vid().
CVE-2023-54135 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: maple_tree: fix potential out-of-bounds access in mas_wr_end_piv() Check the write offset end bounds before using it as the offset into the pivot array. This avoids a possible out-of-bounds access on the pivot array if the write extends to the last slot in the node, in which case the node maximum should be used as the end pivot. akpm: this doesn't affect any current callers, but new users of mapletree may encounter this problem if backported into earlier kernels, so let's fix it in -stable kernels in case of this.
CVE-2023-54138 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm: fix NULL-deref on irq uninstall In case of early initialisation errors and on platforms that do not use the DPU controller, the deinitilisation code can be called with the kms pointer set to NULL. Patchwork: https://patchwork.freedesktop.org/patch/525104/
CVE-2023-54136 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: serial: sprd: Fix DMA buffer leak issue Release DMA buffer when _probe() returns failure to avoid memory leak.
CVE-2025-68748 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Fix UAF race between device unplug and FW event processing The function panthor_fw_unplug() will free the FW memory sections. The problem is that there could still be pending FW events which are yet not handled at this point. process_fw_events_work() can in this case try to access said freed memory. Simply call disable_work_sync() to both drain and prevent future invocation of process_fw_events_work().
CVE-2023-54140 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix WARNING in mark_buffer_dirty due to discarded buffer reuse A syzbot stress test using a corrupted disk image reported that mark_buffer_dirty() called from __nilfs_mark_inode_dirty() or nilfs_palloc_commit_alloc_entry() may output a kernel warning, and can panic if the kernel is booted with panic_on_warn. This is because nilfs2 keeps buffer pointers in local structures for some metadata and reuses them, but such buffers may be forcibly discarded by nilfs_clear_dirty_page() in some critical situations. This issue is reported to appear after commit 28a65b49eb53 ("nilfs2: do not write dirty data after degenerating to read-only"), but the issue has potentially existed before. Fix this issue by checking the uptodate flag when attempting to reuse an internally held buffer, and reloading the metadata instead of reusing the buffer if the flag was lost.
CVE-2025-68736 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: landlock: Fix handling of disconnected directories Disconnected files or directories can appear when they are visible and opened from a bind mount, but have been renamed or moved from the source of the bind mount in a way that makes them inaccessible from the mount point (i.e. out of scope). Previously, access rights tied to files or directories opened through a disconnected directory were collected by walking the related hierarchy down to the root of the filesystem, without taking into account the mount point because it couldn't be found. This could lead to inconsistent access results, potential access right widening, and hard-to-debug renames, especially since such paths cannot be printed. For a sandboxed task to create a disconnected directory, it needs to have write access (i.e. FS_MAKE_REG, FS_REMOVE_FILE, and FS_REFER) to the underlying source of the bind mount, and read access to the related mount point. Because a sandboxed task cannot acquire more access rights than those defined by its Landlock domain, this could lead to inconsistent access rights due to missing permissions that should be inherited from the mount point hierarchy, while inheriting permissions from the filesystem hierarchy hidden by this mount point instead. Landlock now handles files and directories opened from disconnected directories by taking into account the filesystem hierarchy when the mount point is not found in the hierarchy walk, and also always taking into account the mount point from which these disconnected directories were opened. This ensures that a rename is not allowed if it would widen access rights [1]. The rationale is that, even if disconnected hierarchies might not be visible or accessible to a sandboxed task, relying on the collected access rights from them improves the guarantee that access rights will not be widened during a rename because of the access right comparison between the source and the destination (see LANDLOCK_ACCESS_FS_REFER). It may look like this would grant more access on disconnected files and directories, but the security policies are always enforced for all the evaluated hierarchies. This new behavior should be less surprising to users and safer from an access control perspective. Remove a wrong WARN_ON_ONCE() canary in collect_domain_accesses() and fix the related comment. Because opened files have their access rights stored in the related file security properties, there is no impact for disconnected or unlinked files.
CVE-2024-47683 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip Recompute DSC Params if no Stream on Link [why] Encounter NULL pointer dereference uner mst + dsc setup. BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 4 PID: 917 Comm: sway Not tainted 6.3.9-arch1-1 #1 124dc55df4f5272ccb409f39ef4872fc2b3376a2 Hardware name: LENOVO 20NKS01Y00/20NKS01Y00, BIOS R12ET61W(1.31 ) 07/28/2022 RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000010ddc6000 CR4: 00000000003506e0 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? plist_add+0xbe/0x100 ? exc_page_fault+0x7c/0x180 ? asm_exc_page_fault+0x26/0x30 ? drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] ? drm_dp_atomic_find_time_slots+0x28/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] compute_mst_dsc_configs_for_link+0x2ff/0xa40 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] ? fill_plane_buffer_attributes+0x419/0x510 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] compute_mst_dsc_configs_for_state+0x1e1/0x250 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] amdgpu_dm_atomic_check+0xecd/0x1190 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] drm_atomic_check_only+0x5c5/0xa40 drm_mode_atomic_ioctl+0x76e/0xbc0 [how] dsc recompute should be skipped if no mode change detected on the new request. If detected, keep checking whether the stream is already on current state or not.
CVE-2023-53642 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86: fix clear_user_rep_good() exception handling annotation This code no longer exists in mainline, because it was removed in commit d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing") upstream. However, rather than backport the full range of x86 memory clearing and copying cleanups, fix the exception table annotation placement for the final 'rep movsb' in clear_user_rep_good(): rather than pointing at the actual instruction that did the user space access, it pointed to the register move just before it. That made sense from a code flow standpoint, but not from an actual usage standpoint: it means that if user access takes an exception, the exception handler won't actually find the instruction in the exception tables. As a result, rather than fixing it up and returning -EFAULT, it would then turn it into a kernel oops report instead, something like: BUG: unable to handle page fault for address: 0000000020081000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page ... RIP: 0010:clear_user_rep_good+0x1c/0x30 arch/x86/lib/clear_page_64.S:147 ... Call Trace: __clear_user arch/x86/include/asm/uaccess_64.h:103 [inline] clear_user arch/x86/include/asm/uaccess_64.h:124 [inline] iov_iter_zero+0x709/0x1290 lib/iov_iter.c:800 iomap_dio_hole_iter fs/iomap/direct-io.c:389 [inline] iomap_dio_iter fs/iomap/direct-io.c:440 [inline] __iomap_dio_rw+0xe3d/0x1cd0 fs/iomap/direct-io.c:601 iomap_dio_rw+0x40/0xa0 fs/iomap/direct-io.c:689 ext4_dio_read_iter fs/ext4/file.c:94 [inline] ext4_file_read_iter+0x4be/0x690 fs/ext4/file.c:145 call_read_iter include/linux/fs.h:2183 [inline] do_iter_readv_writev+0x2e0/0x3b0 fs/read_write.c:733 do_iter_read+0x2f2/0x750 fs/read_write.c:796 vfs_readv+0xe5/0x150 fs/read_write.c:916 do_preadv+0x1b6/0x270 fs/read_write.c:1008 __do_sys_preadv2 fs/read_write.c:1070 [inline] __se_sys_preadv2 fs/read_write.c:1061 [inline] __x64_sys_preadv2+0xef/0x150 fs/read_write.c:1061 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd which then looks like a filesystem bug rather than the incorrect exception annotation that it is. [ The alternative to this one-liner fix is to take the upstream series that cleans this all up: 68674f94ffc9 ("x86: don't use REP_GOOD or ERMS for small memory copies") 20f3337d350c ("x86: don't use REP_GOOD or ERMS for small memory clearing") adfcf4231b8c ("x86: don't use REP_GOOD or ERMS for user memory copies") * d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing") 3639a535587d ("x86: move stac/clac from user copy routines into callers") 577e6a7fd50d ("x86: inline the 'rep movs' in user copies for the FSRM case") 8c9b6a88b7e2 ("x86: improve on the non-rep 'clear_user' function") 427fda2c8a49 ("x86: improve on the non-rep 'copy_user' function") * e046fe5a36a9 ("x86: set FSRS automatically on AMD CPUs that have FSRM") e1f2750edc4a ("x86: remove 'zerorest' argument from __copy_user_nocache()") 034ff37d3407 ("x86: rewrite '__copy_user_nocache' function") with either the whole series or at a minimum the two marked commits being needed to fix this issue ]
CVE-2024-46858 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-12-24 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: Fix uaf in __timer_delete_sync There are two paths to access mptcp_pm_del_add_timer, result in a race condition: CPU1 CPU2 ==== ==== net_rx_action napi_poll netlink_sendmsg __napi_poll netlink_unicast process_backlog netlink_unicast_kernel __netif_receive_skb genl_rcv __netif_receive_skb_one_core netlink_rcv_skb NF_HOOK genl_rcv_msg ip_local_deliver_finish genl_family_rcv_msg ip_protocol_deliver_rcu genl_family_rcv_msg_doit tcp_v4_rcv mptcp_pm_nl_flush_addrs_doit tcp_v4_do_rcv mptcp_nl_remove_addrs_list tcp_rcv_established mptcp_pm_remove_addrs_and_subflows tcp_data_queue remove_anno_list_by_saddr mptcp_incoming_options mptcp_pm_del_add_timer mptcp_pm_del_add_timer kfree(entry) In remove_anno_list_by_saddr(running on CPU2), after leaving the critical zone protected by "pm.lock", the entry will be released, which leads to the occurrence of uaf in the mptcp_pm_del_add_timer(running on CPU1). Keeping a reference to add_timer inside the lock, and calling sk_stop_timer_sync() with this reference, instead of "entry->add_timer". Move list_del(&entry->list) to mptcp_pm_del_add_timer and inside the pm lock, do not directly access any members of the entry outside the pm lock, which can avoid similar "entry->x" uaf.
CVE-2025-52842 3 Apple, Laundry Project, Linux 3 Macos, Laundry, Linux Kernel 2025-12-23 6.1 Medium
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Laundry on Linux, MacOS allows Account Takeover. This issue affects Laundry: 2.3.0.
CVE-2025-52841 3 Apple, Laundry Project, Linux 3 Macos, Laundry, Linux Kernel 2025-12-23 8.8 High
Cross-Site Request Forgery (CSRF) vulnerability in Laundry on Linux, MacOS allows to perform an Account Takeover. This issue affects Laundry: 2.3.0.
CVE-2025-38410 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix a fence leak in submit error path In error paths, we could unref the submit without calling drm_sched_entity_push_job(), so msm_job_free() will never get called. Since drm_sched_job_cleanup() will NULL out the s_fence, we can use that to detect this case. Patchwork: https://patchwork.freedesktop.org/patch/653584/
CVE-2025-38409 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix another leak in the submit error path put_unused_fd() doesn't free the installed file, if we've already done fd_install(). So we need to also free the sync_file. Patchwork: https://patchwork.freedesktop.org/patch/653583/
CVE-2025-38404 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: typec: displayport: Fix potential deadlock The deadlock can occur due to a recursive lock acquisition of `cros_typec_altmode_data::mutex`. The call chain is as follows: 1. cros_typec_altmode_work() acquires the mutex 2. typec_altmode_vdm() -> dp_altmode_vdm() -> 3. typec_altmode_exit() -> cros_typec_altmode_exit() 4. cros_typec_altmode_exit() attempts to acquire the mutex again To prevent this, defer the `typec_altmode_exit()` call by scheduling it rather than calling it directly from within the mutex-protected context.
CVE-2025-38403 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: vsock/vmci: Clear the vmci transport packet properly when initializing it In vmci_transport_packet_init memset the vmci_transport_packet before populating the fields to avoid any uninitialised data being left in the structure.
CVE-2025-38401 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mtk-sd: Prevent memory corruption from DMA map failure If msdc_prepare_data() fails to map the DMA region, the request is not prepared for data receiving, but msdc_start_data() proceeds the DMA with previous setting. Since this will lead a memory corruption, we have to stop the request operation soon after the msdc_prepare_data() fails to prepare it.
CVE-2025-38399 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: target: Fix NULL pointer dereference in core_scsi3_decode_spec_i_port() The function core_scsi3_decode_spec_i_port(), in its error code path, unconditionally calls core_scsi3_lunacl_undepend_item() passing the dest_se_deve pointer, which may be NULL. This can lead to a NULL pointer dereference if dest_se_deve remains unset. SPC-3 PR SPEC_I_PT: Unable to locate dest_tpg Unable to handle kernel paging request at virtual address dfff800000000012 Call trace: core_scsi3_lunacl_undepend_item+0x2c/0xf0 [target_core_mod] (P) core_scsi3_decode_spec_i_port+0x120c/0x1c30 [target_core_mod] core_scsi3_emulate_pro_register+0x6b8/0xcd8 [target_core_mod] target_scsi3_emulate_pr_out+0x56c/0x840 [target_core_mod] Fix this by adding a NULL check before calling core_scsi3_lunacl_undepend_item()
CVE-2025-38396 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: fs: export anon_inode_make_secure_inode() and fix secretmem LSM bypass Export anon_inode_make_secure_inode() to allow KVM guest_memfd to create anonymous inodes with proper security context. This replaces the current pattern of calling alloc_anon_inode() followed by inode_init_security_anon() for creating security context manually. This change also fixes a security regression in secretmem where the S_PRIVATE flag was not cleared after alloc_anon_inode(), causing LSM/SELinux checks to be bypassed for secretmem file descriptors. As guest_memfd currently resides in the KVM module, we need to export this symbol for use outside the core kernel. In the future, guest_memfd might be moved to core-mm, at which point the symbols no longer would have to be exported. When/if that happens is still unclear.