| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: avoid suspicious RCU usage for synced VLAN-aware MAC addresses
When using the felix driver (the only one which supports UC filtering
and MC filtering) as a DSA master for a random other DSA switch, one can
see the following stack trace when the downstream switch ports join a
VLAN-aware bridge:
=============================
WARNING: suspicious RCU usage
-----------------------------
net/8021q/vlan_core.c:238 suspicious rcu_dereference_protected() usage!
stack backtrace:
Workqueue: dsa_ordered dsa_slave_switchdev_event_work
Call trace:
lockdep_rcu_suspicious+0x170/0x210
vlan_for_each+0x8c/0x188
dsa_slave_sync_uc+0x128/0x178
__hw_addr_sync_dev+0x138/0x158
dsa_slave_set_rx_mode+0x58/0x70
__dev_set_rx_mode+0x88/0xa8
dev_uc_add+0x74/0xa0
dsa_port_bridge_host_fdb_add+0xec/0x180
dsa_slave_switchdev_event_work+0x7c/0x1c8
process_one_work+0x290/0x568
What it's saying is that vlan_for_each() expects rtnl_lock() context and
it's not getting it, when it's called from the DSA master's ndo_set_rx_mode().
The caller of that - dsa_slave_set_rx_mode() - is the slave DSA
interface's dsa_port_bridge_host_fdb_add() which comes from the deferred
dsa_slave_switchdev_event_work().
We went to great lengths to avoid the rtnl_lock() context in that call
path in commit 0faf890fc519 ("net: dsa: drop rtnl_lock from
dsa_slave_switchdev_event_work"), and calling rtnl_lock() is simply not
an option due to the possibility of deadlocking when calling
dsa_flush_workqueue() from the call paths that do hold rtnl_lock() -
basically all of them.
So, when the DSA master calls vlan_for_each() from its ndo_set_rx_mode(),
the state of the 8021q driver on this device is really not protected
from concurrent access by anything.
Looking at net/8021q/, I don't think that vlan_info->vid_list was
particularly designed with RCU traversal in mind, so introducing an RCU
read-side form of vlan_for_each() - vlan_for_each_rcu() - won't be so
easy, and it also wouldn't be exactly what we need anyway.
In general I believe that the solution isn't in net/8021q/ anyway;
vlan_for_each() is not cut out for this task. DSA doesn't need rtnl_lock()
to be held per se - since it's not a netdev state change that we're
blocking, but rather, just concurrent additions/removals to a VLAN list.
We don't even need sleepable context - the callback of vlan_for_each()
just schedules deferred work.
The proposed escape is to remove the dependency on vlan_for_each() and
to open-code a non-sleepable, rtnl-free alternative to that, based on
copies of the VLAN list modified from .ndo_vlan_rx_add_vid() and
.ndo_vlan_rx_kill_vid(). |
| In the Linux kernel, the following vulnerability has been resolved:
sfc: fix crash when reading stats while NIC is resetting
efx_net_stats() (.ndo_get_stats64) can be called during an ethtool
selftest, during which time nic_data->mc_stats is NULL as the NIC has
been fini'd. In this case do not attempt to fetch the latest stats
from the hardware, else we will crash on a NULL dereference:
BUG: kernel NULL pointer dereference, address: 0000000000000038
RIP efx_nic_update_stats
abridged calltrace:
efx_ef10_update_stats_pf
efx_net_stats
dev_get_stats
dev_seq_printf_stats
Skipping the read is safe, we will simply give out stale stats.
To ensure that the free in efx_ef10_fini_nic() does not race against
efx_ef10_update_stats_pf(), which could cause a TOCTTOU bug, take the
efx->stats_lock in fini_nic (it is already held across update_stats). |
| In the Linux kernel, the following vulnerability has been resolved:
usb: mtu3: fix kernel panic at qmu transfer done irq handler
When handle qmu transfer irq, it will unlock @mtu->lock before give back
request, if another thread handle disconnect event at the same time, and
try to disable ep, it may lock @mtu->lock and free qmu ring, then qmu
irq hanlder may get a NULL gpd, avoid the KE by checking gpd's value before
handling it.
e.g.
qmu done irq on cpu0 thread running on cpu1
qmu_done_tx()
handle gpd [0]
mtu3_requ_complete() mtu3_gadget_ep_disable()
unlock @mtu->lock
give back request lock @mtu->lock
mtu3_ep_disable()
mtu3_gpd_ring_free()
unlock @mtu->lock
lock @mtu->lock
get next gpd [1]
[1]: goto [0] to handle next gpd, and next gpd may be NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF of alloc->vma in race with munmap()
[ cmllamas: clean forward port from commit 015ac18be7de ("binder: fix
UAF of alloc->vma in race with munmap()") in 5.10 stable. It is needed
in mainline after the revert of commit a43cfc87caaf ("android: binder:
stop saving a pointer to the VMA") as pointed out by Liam. The commit
log and tags have been tweaked to reflect this. ]
In commit 720c24192404 ("ANDROID: binder: change down_write to
down_read") binder assumed the mmap read lock is sufficient to protect
alloc->vma inside binder_update_page_range(). This used to be accurate
until commit dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in
munmap"), which now downgrades the mmap_lock after detaching the vma
from the rbtree in munmap(). Then it proceeds to teardown and free the
vma with only the read lock held.
This means that accesses to alloc->vma in binder_update_page_range() now
will race with vm_area_free() in munmap() and can cause a UAF as shown
in the following KASAN trace:
==================================================================
BUG: KASAN: use-after-free in vm_insert_page+0x7c/0x1f0
Read of size 8 at addr ffff16204ad00600 by task server/558
CPU: 3 PID: 558 Comm: server Not tainted 5.10.150-00001-gdc8dcf942daa #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2a0
show_stack+0x18/0x2c
dump_stack+0xf8/0x164
print_address_description.constprop.0+0x9c/0x538
kasan_report+0x120/0x200
__asan_load8+0xa0/0xc4
vm_insert_page+0x7c/0x1f0
binder_update_page_range+0x278/0x50c
binder_alloc_new_buf+0x3f0/0xba0
binder_transaction+0x64c/0x3040
binder_thread_write+0x924/0x2020
binder_ioctl+0x1610/0x2e5c
__arm64_sys_ioctl+0xd4/0x120
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
Allocated by task 559:
kasan_save_stack+0x38/0x6c
__kasan_kmalloc.constprop.0+0xe4/0xf0
kasan_slab_alloc+0x18/0x2c
kmem_cache_alloc+0x1b0/0x2d0
vm_area_alloc+0x28/0x94
mmap_region+0x378/0x920
do_mmap+0x3f0/0x600
vm_mmap_pgoff+0x150/0x17c
ksys_mmap_pgoff+0x284/0x2dc
__arm64_sys_mmap+0x84/0xa4
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
Freed by task 560:
kasan_save_stack+0x38/0x6c
kasan_set_track+0x28/0x40
kasan_set_free_info+0x24/0x4c
__kasan_slab_free+0x100/0x164
kasan_slab_free+0x14/0x20
kmem_cache_free+0xc4/0x34c
vm_area_free+0x1c/0x2c
remove_vma+0x7c/0x94
__do_munmap+0x358/0x710
__vm_munmap+0xbc/0x130
__arm64_sys_munmap+0x4c/0x64
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
[...]
==================================================================
To prevent the race above, revert back to taking the mmap write lock
inside binder_update_page_range(). One might expect an increase of mmap
lock contention. However, binder already serializes these calls via top
level alloc->mutex. Also, there was no performance impact shown when
running the binder benchmark tests. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/kexec: Fix double-free of elf header buffer
After
b3e34a47f989 ("x86/kexec: fix memory leak of elf header buffer"),
freeing image->elf_headers in the error path of crash_load_segments()
is not needed because kimage_file_post_load_cleanup() will take
care of that later. And not clearing it could result in a double-free.
Drop the superfluous vfree() call at the error path of
crash_load_segments(). |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Move representor neigh cleanup to profile cleanup_tx
For IP tunnel encapsulation in ECMP (Equal-Cost Multipath) mode, as
the flow is duplicated to the peer eswitch, the related neighbour
information on the peer uplink representor is created as well.
In the cited commit, eswitch devcom unpair is moved to uplink unload
API, specifically the profile->cleanup_tx. If there is a encap rule
offloaded in ECMP mode, when one eswitch does unpair (because of
unloading the driver, for instance), and the peer rule from the peer
eswitch is going to be deleted, the use-after-free error is triggered
while accessing neigh info, as it is already cleaned up in uplink's
profile->disable, which is before its profile->cleanup_tx.
To fix this issue, move the neigh cleanup to profile's cleanup_tx
callback, and after mlx5e_cleanup_uplink_rep_tx is called. The neigh
init is moved to init_tx for symmeter.
[ 2453.376299] BUG: KASAN: slab-use-after-free in mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.379125] Read of size 4 at addr ffff888127af9008 by task modprobe/2496
[ 2453.381542] CPU: 7 PID: 2496 Comm: modprobe Tainted: G B 6.4.0-rc7+ #15
[ 2453.383386] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 2453.384335] Call Trace:
[ 2453.384625] <TASK>
[ 2453.384891] dump_stack_lvl+0x33/0x50
[ 2453.385285] print_report+0xc2/0x610
[ 2453.385667] ? __virt_addr_valid+0xb1/0x130
[ 2453.386091] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.386757] kasan_report+0xae/0xe0
[ 2453.387123] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.387798] mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.388465] mlx5e_rep_encap_entry_detach+0xa6/0xe0 [mlx5_core]
[ 2453.389111] mlx5e_encap_dealloc+0xa7/0x100 [mlx5_core]
[ 2453.389706] mlx5e_tc_tun_encap_dests_unset+0x61/0xb0 [mlx5_core]
[ 2453.390361] mlx5_free_flow_attr_actions+0x11e/0x340 [mlx5_core]
[ 2453.391015] ? complete_all+0x43/0xd0
[ 2453.391398] ? free_flow_post_acts+0x38/0x120 [mlx5_core]
[ 2453.392004] mlx5e_tc_del_fdb_flow+0x4ae/0x690 [mlx5_core]
[ 2453.392618] mlx5e_tc_del_fdb_peers_flow+0x308/0x370 [mlx5_core]
[ 2453.393276] mlx5e_tc_clean_fdb_peer_flows+0xf5/0x140 [mlx5_core]
[ 2453.393925] mlx5_esw_offloads_unpair+0x86/0x540 [mlx5_core]
[ 2453.394546] ? mlx5_esw_offloads_set_ns_peer.isra.0+0x180/0x180 [mlx5_core]
[ 2453.395268] ? down_write+0xaa/0x100
[ 2453.395652] mlx5_esw_offloads_devcom_event+0x203/0x530 [mlx5_core]
[ 2453.396317] mlx5_devcom_send_event+0xbb/0x190 [mlx5_core]
[ 2453.396917] mlx5_esw_offloads_devcom_cleanup+0xb0/0xd0 [mlx5_core]
[ 2453.397582] mlx5e_tc_esw_cleanup+0x42/0x120 [mlx5_core]
[ 2453.398182] mlx5e_rep_tc_cleanup+0x15/0x30 [mlx5_core]
[ 2453.398768] mlx5e_cleanup_rep_tx+0x6c/0x80 [mlx5_core]
[ 2453.399367] mlx5e_detach_netdev+0xee/0x120 [mlx5_core]
[ 2453.399957] mlx5e_netdev_change_profile+0x84/0x170 [mlx5_core]
[ 2453.400598] mlx5e_vport_rep_unload+0xe0/0xf0 [mlx5_core]
[ 2453.403781] mlx5_eswitch_unregister_vport_reps+0x15e/0x190 [mlx5_core]
[ 2453.404479] ? mlx5_eswitch_register_vport_reps+0x200/0x200 [mlx5_core]
[ 2453.405170] ? up_write+0x39/0x60
[ 2453.405529] ? kernfs_remove_by_name_ns+0xb7/0xe0
[ 2453.405985] auxiliary_bus_remove+0x2e/0x40
[ 2453.406405] device_release_driver_internal+0x243/0x2d0
[ 2453.406900] ? kobject_put+0x42/0x2d0
[ 2453.407284] bus_remove_device+0x128/0x1d0
[ 2453.407687] device_del+0x240/0x550
[ 2453.408053] ? waiting_for_supplier_show+0xe0/0xe0
[ 2453.408511] ? kobject_put+0xfa/0x2d0
[ 2453.408889] ? __kmem_cache_free+0x14d/0x280
[ 2453.409310] mlx5_rescan_drivers_locked.part.0+0xcd/0x2b0 [mlx5_core]
[ 2453.409973] mlx5_unregister_device+0x40/0x50 [mlx5_core]
[ 2453.410561] mlx5_uninit_one+0x3d/0x110 [mlx5_core]
[ 2453.411111] remove_one+0x89/0x130 [mlx5_core]
[ 24
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: platform: mtk-mdp3: Add missing check and free for ida_alloc
Add the check for the return value of the ida_alloc in order to avoid
NULL pointer dereference.
Moreover, free allocated "ctx->id" if mdp_m2m_open fails later in order
to avoid memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
net: core: remove unnecessary frame_sz check in bpf_xdp_adjust_tail()
Syzkaller reported the following issue:
=======================================
Too BIG xdp->frame_sz = 131072
WARNING: CPU: 0 PID: 5020 at net/core/filter.c:4121
____bpf_xdp_adjust_tail net/core/filter.c:4121 [inline]
WARNING: CPU: 0 PID: 5020 at net/core/filter.c:4121
bpf_xdp_adjust_tail+0x466/0xa10 net/core/filter.c:4103
...
Call Trace:
<TASK>
bpf_prog_4add87e5301a4105+0x1a/0x1c
__bpf_prog_run include/linux/filter.h:600 [inline]
bpf_prog_run_xdp include/linux/filter.h:775 [inline]
bpf_prog_run_generic_xdp+0x57e/0x11e0 net/core/dev.c:4721
netif_receive_generic_xdp net/core/dev.c:4807 [inline]
do_xdp_generic+0x35c/0x770 net/core/dev.c:4866
tun_get_user+0x2340/0x3ca0 drivers/net/tun.c:1919
tun_chr_write_iter+0xe8/0x210 drivers/net/tun.c:2043
call_write_iter include/linux/fs.h:1871 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x650/0xe40 fs/read_write.c:584
ksys_write+0x12f/0x250 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
xdp->frame_sz > PAGE_SIZE check was introduced in commit c8741e2bfe87
("xdp: Allow bpf_xdp_adjust_tail() to grow packet size"). But Jesper
Dangaard Brouer <jbrouer@redhat.com> noted that after introducing the
xdp_init_buff() which all XDP driver use - it's safe to remove this
check. The original intend was to catch cases where XDP drivers have
not been updated to use xdp.frame_sz, but that is not longer a concern
(since xdp_init_buff).
Running the initial syzkaller repro it was discovered that the
contiguous physical memory allocation is used for both xdp paths in
tun_get_user(), e.g. tun_build_skb() and tun_alloc_skb(). It was also
stated by Jesper Dangaard Brouer <jbrouer@redhat.com> that XDP can
work on higher order pages, as long as this is contiguous physical
memory (e.g. a page). |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/user_events: Ensure write index cannot be negative
The write index indicates which event the data is for and accesses a
per-file array. The index is passed by user processes during write()
calls as the first 4 bytes. Ensure that it cannot be negative by
returning -EINVAL to prevent out of bounds accesses.
Update ftrace self-test to ensure this occurs properly. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix WARNING in mark_buffer_dirty due to discarded buffer reuse
A syzbot stress test using a corrupted disk image reported that
mark_buffer_dirty() called from __nilfs_mark_inode_dirty() or
nilfs_palloc_commit_alloc_entry() may output a kernel warning, and can
panic if the kernel is booted with panic_on_warn.
This is because nilfs2 keeps buffer pointers in local structures for some
metadata and reuses them, but such buffers may be forcibly discarded by
nilfs_clear_dirty_page() in some critical situations.
This issue is reported to appear after commit 28a65b49eb53 ("nilfs2: do
not write dirty data after degenerating to read-only"), but the issue has
potentially existed before.
Fix this issue by checking the uptodate flag when attempting to reuse an
internally held buffer, and reloading the metadata instead of reusing the
buffer if the flag was lost. |
| In the Linux kernel, the following vulnerability has been resolved:
maple_tree: fix potential out-of-bounds access in mas_wr_end_piv()
Check the write offset end bounds before using it as the offset into the
pivot array. This avoids a possible out-of-bounds access on the pivot
array if the write extends to the last slot in the node, in which case the
node maximum should be used as the end pivot.
akpm: this doesn't affect any current callers, but new users of mapletree
may encounter this problem if backported into earlier kernels, so let's
fix it in -stable kernels in case of this. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: sprd: Fix DMA buffer leak issue
Release DMA buffer when _probe() returns failure to avoid memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: Add missing hw_ops->get_ring_selector() for IPQ5018
During sending data after clients connected, hw_ops->get_ring_selector()
will be called. But for IPQ5018, this member isn't set, and the
following NULL pointer exception will be occurred:
[ 38.840478] 8<--- cut here ---
[ 38.840517] Unable to handle kernel NULL pointer dereference at virtual address 00000000
...
[ 38.923161] PC is at 0x0
[ 38.927930] LR is at ath11k_dp_tx+0x70/0x730 [ath11k]
...
[ 39.063264] Process hostapd (pid: 1034, stack limit = 0x801ceb3d)
[ 39.068994] Stack: (0x856a9a68 to 0x856aa000)
...
[ 39.438467] [<7f323804>] (ath11k_dp_tx [ath11k]) from [<7f314e6c>] (ath11k_mac_op_tx+0x80/0x190 [ath11k])
[ 39.446607] [<7f314e6c>] (ath11k_mac_op_tx [ath11k]) from [<7f17dbe0>] (ieee80211_handle_wake_tx_queue+0x7c/0xc0 [mac80211])
[ 39.456162] [<7f17dbe0>] (ieee80211_handle_wake_tx_queue [mac80211]) from [<7f174450>] (ieee80211_probereq_get+0x584/0x704 [mac80211])
[ 39.467443] [<7f174450>] (ieee80211_probereq_get [mac80211]) from [<7f178c40>] (ieee80211_tx_prepare_skb+0x1f8/0x248 [mac80211])
[ 39.479334] [<7f178c40>] (ieee80211_tx_prepare_skb [mac80211]) from [<7f179e28>] (__ieee80211_subif_start_xmit+0x32c/0x3d4 [mac80211])
[ 39.491053] [<7f179e28>] (__ieee80211_subif_start_xmit [mac80211]) from [<7f17af08>] (ieee80211_tx_control_port+0x19c/0x288 [mac80211])
[ 39.502946] [<7f17af08>] (ieee80211_tx_control_port [mac80211]) from [<7f0fc704>] (nl80211_tx_control_port+0x174/0x1d4 [cfg80211])
[ 39.515017] [<7f0fc704>] (nl80211_tx_control_port [cfg80211]) from [<808ceac4>] (genl_rcv_msg+0x154/0x340)
[ 39.526814] [<808ceac4>] (genl_rcv_msg) from [<808cdb74>] (netlink_rcv_skb+0xb8/0x11c)
[ 39.536446] [<808cdb74>] (netlink_rcv_skb) from [<808ce1d0>] (genl_rcv+0x28/0x34)
[ 39.544344] [<808ce1d0>] (genl_rcv) from [<808cd234>] (netlink_unicast+0x174/0x274)
[ 39.551895] [<808cd234>] (netlink_unicast) from [<808cd510>] (netlink_sendmsg+0x1dc/0x440)
[ 39.559362] [<808cd510>] (netlink_sendmsg) from [<808596e0>] (____sys_sendmsg+0x1a8/0x1fc)
[ 39.567697] [<808596e0>] (____sys_sendmsg) from [<8085b1a8>] (___sys_sendmsg+0xa4/0xdc)
[ 39.575941] [<8085b1a8>] (___sys_sendmsg) from [<8085b310>] (sys_sendmsg+0x44/0x74)
[ 39.583841] [<8085b310>] (sys_sendmsg) from [<80300060>] (ret_fast_syscall+0x0/0x40)
...
[ 39.620734] Code: bad PC value
[ 39.625869] ---[ end trace 8aef983ad3cbc032 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
vfio/type1: fix cap_migration information leak
Fix an information leak where an uninitialized hole in struct
vfio_iommu_type1_info_cap_migration on the stack is exposed to userspace.
The definition of struct vfio_iommu_type1_info_cap_migration contains a hole as
shown in this pahole(1) output:
struct vfio_iommu_type1_info_cap_migration {
struct vfio_info_cap_header header; /* 0 8 */
__u32 flags; /* 8 4 */
/* XXX 4 bytes hole, try to pack */
__u64 pgsize_bitmap; /* 16 8 */
__u64 max_dirty_bitmap_size; /* 24 8 */
/* size: 32, cachelines: 1, members: 4 */
/* sum members: 28, holes: 1, sum holes: 4 */
/* last cacheline: 32 bytes */
};
The cap_mig variable is filled in without initializing the hole:
static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
struct vfio_info_cap *caps)
{
struct vfio_iommu_type1_info_cap_migration cap_mig;
cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
cap_mig.header.version = 1;
cap_mig.flags = 0;
/* support minimum pgsize */
cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
return vfio_info_add_capability(caps, &cap_mig.header, sizeof(cap_mig));
}
The structure is then copied to a temporary location on the heap. At this point
it's already too late and ioctl(VFIO_IOMMU_GET_INFO) copies it to userspace
later:
int vfio_info_add_capability(struct vfio_info_cap *caps,
struct vfio_info_cap_header *cap, size_t size)
{
struct vfio_info_cap_header *header;
header = vfio_info_cap_add(caps, size, cap->id, cap->version);
if (IS_ERR(header))
return PTR_ERR(header);
memcpy(header + 1, cap + 1, size - sizeof(*header));
return 0;
}
This issue was found by code inspection. |
| In the Linux kernel, the following vulnerability has been resolved:
gtp: Fix use-after-free in __gtp_encap_destroy().
syzkaller reported use-after-free in __gtp_encap_destroy(). [0]
It shows the same process freed sk and touched it illegally.
Commit e198987e7dd7 ("gtp: fix suspicious RCU usage") added lock_sock()
and release_sock() in __gtp_encap_destroy() to protect sk->sk_user_data,
but release_sock() is called after sock_put() releases the last refcnt.
[0]:
BUG: KASAN: slab-use-after-free in instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
BUG: KASAN: slab-use-after-free in atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline]
BUG: KASAN: slab-use-after-free in queued_spin_lock include/asm-generic/qspinlock.h:111 [inline]
BUG: KASAN: slab-use-after-free in do_raw_spin_lock include/linux/spinlock.h:186 [inline]
BUG: KASAN: slab-use-after-free in __raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline]
BUG: KASAN: slab-use-after-free in _raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178
Write of size 4 at addr ffff88800dbef398 by task syz-executor.2/2401
CPU: 1 PID: 2401 Comm: syz-executor.2 Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x72/0xa0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:351 [inline]
print_report+0xcc/0x620 mm/kasan/report.c:462
kasan_report+0xb2/0xe0 mm/kasan/report.c:572
check_region_inline mm/kasan/generic.c:181 [inline]
kasan_check_range+0x39/0x1c0 mm/kasan/generic.c:187
instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline]
queued_spin_lock include/asm-generic/qspinlock.h:111 [inline]
do_raw_spin_lock include/linux/spinlock.h:186 [inline]
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline]
_raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178
spin_lock_bh include/linux/spinlock.h:355 [inline]
release_sock+0x1f/0x1a0 net/core/sock.c:3526
gtp_encap_disable_sock drivers/net/gtp.c:651 [inline]
gtp_encap_disable+0xb9/0x220 drivers/net/gtp.c:664
gtp_dev_uninit+0x19/0x50 drivers/net/gtp.c:728
unregister_netdevice_many_notify+0x97e/0x1520 net/core/dev.c:10841
rtnl_delete_link net/core/rtnetlink.c:3216 [inline]
rtnl_dellink+0x3c0/0xb30 net/core/rtnetlink.c:3268
rtnetlink_rcv_msg+0x450/0xb10 net/core/rtnetlink.c:6423
netlink_rcv_skb+0x15d/0x450 net/netlink/af_netlink.c:2548
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0x700/0x930 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x91c/0xe30 net/netlink/af_netlink.c:1913
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg+0x1b7/0x200 net/socket.c:747
____sys_sendmsg+0x75a/0x990 net/socket.c:2493
___sys_sendmsg+0x11d/0x1c0 net/socket.c:2547
__sys_sendmsg+0xfe/0x1d0 net/socket.c:2576
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3f/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7f1168b1fe5d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48
RSP: 002b:00007f1167edccc8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00000000004bbf80 RCX: 00007f1168b1fe5d
RDX: 0000000000000000 RSI: 00000000200002c0 RDI: 0000000000000003
RBP: 00000000004bbf80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f1168b80530 R15: 0000000000000000
</TASK>
Allocated by task 1483:
kasan_save_stack+0x22/0x50 mm/kasan/common.c:45
kasan_set_track+0x25/0x30 mm/kasan/common.c:52
__kasan_slab_alloc+0x
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Clear cmds after chip reset
Commit aefed3e5548f ("scsi: qla2xxx: target: Fix offline port handling
and host reset handling") caused two problems:
1. Commands sent to FW, after chip reset got stuck and never freed as FW
is not going to respond to them anymore.
2. BUG_ON(cmd->sg_mapped) in qlt_free_cmd(). Commit 26f9ce53817a
("scsi: qla2xxx: Fix missed DMA unmap for aborted commands")
attempted to fix this, but introduced another bug under different
circumstances when two different CPUs were racing to call
qlt_unmap_sg() at the same time: BUG_ON(!valid_dma_direction(dir)) in
dma_unmap_sg_attrs().
So revert "scsi: qla2xxx: Fix missed DMA unmap for aborted commands" and
partially revert "scsi: qla2xxx: target: Fix offline port handling and
host reset handling" at __qla2x00_abort_all_cmds. |
| In the Linux kernel, the following vulnerability has been resolved:
landlock: Fix handling of disconnected directories
Disconnected files or directories can appear when they are visible and
opened from a bind mount, but have been renamed or moved from the source
of the bind mount in a way that makes them inaccessible from the mount
point (i.e. out of scope).
Previously, access rights tied to files or directories opened through a
disconnected directory were collected by walking the related hierarchy
down to the root of the filesystem, without taking into account the
mount point because it couldn't be found. This could lead to
inconsistent access results, potential access right widening, and
hard-to-debug renames, especially since such paths cannot be printed.
For a sandboxed task to create a disconnected directory, it needs to
have write access (i.e. FS_MAKE_REG, FS_REMOVE_FILE, and FS_REFER) to
the underlying source of the bind mount, and read access to the related
mount point. Because a sandboxed task cannot acquire more access
rights than those defined by its Landlock domain, this could lead to
inconsistent access rights due to missing permissions that should be
inherited from the mount point hierarchy, while inheriting permissions
from the filesystem hierarchy hidden by this mount point instead.
Landlock now handles files and directories opened from disconnected
directories by taking into account the filesystem hierarchy when the
mount point is not found in the hierarchy walk, and also always taking
into account the mount point from which these disconnected directories
were opened. This ensures that a rename is not allowed if it would
widen access rights [1].
The rationale is that, even if disconnected hierarchies might not be
visible or accessible to a sandboxed task, relying on the collected
access rights from them improves the guarantee that access rights will
not be widened during a rename because of the access right comparison
between the source and the destination (see LANDLOCK_ACCESS_FS_REFER).
It may look like this would grant more access on disconnected files and
directories, but the security policies are always enforced for all the
evaluated hierarchies. This new behavior should be less surprising to
users and safer from an access control perspective.
Remove a wrong WARN_ON_ONCE() canary in collect_domain_accesses() and
fix the related comment.
Because opened files have their access rights stored in the related file
security properties, there is no impact for disconnected or unlinked
files. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix NULL-deref on irq uninstall
In case of early initialisation errors and on platforms that do not use
the DPU controller, the deinitilisation code can be called with the kms
pointer set to NULL.
Patchwork: https://patchwork.freedesktop.org/patch/525104/ |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix kernel warning during topology setup
This patch fixes the following kernel warning seen during
driver load by correctly initializing the p2plink attr before
creating the sysfs file:
[ +0.002865] ------------[ cut here ]------------
[ +0.002327] kobject: '(null)' (0000000056260cfb): is not initialized, yet kobject_put() is being called.
[ +0.004780] WARNING: CPU: 32 PID: 1006 at lib/kobject.c:718 kobject_put+0xaa/0x1c0
[ +0.001361] Call Trace:
[ +0.001234] <TASK>
[ +0.001067] kfd_remove_sysfs_node_entry+0x24a/0x2d0 [amdgpu]
[ +0.003147] kfd_topology_update_sysfs+0x3d/0x750 [amdgpu]
[ +0.002890] kfd_topology_add_device+0xbd7/0xc70 [amdgpu]
[ +0.002844] ? lock_release+0x13c/0x2e0
[ +0.001936] ? smu_cmn_send_smc_msg_with_param+0x1e8/0x2d0 [amdgpu]
[ +0.003313] ? amdgpu_dpm_get_mclk+0x54/0x60 [amdgpu]
[ +0.002703] kgd2kfd_device_init.cold+0x39f/0x4ed [amdgpu]
[ +0.002930] amdgpu_amdkfd_device_init+0x13d/0x1f0 [amdgpu]
[ +0.002944] amdgpu_device_init.cold+0x1464/0x17b4 [amdgpu]
[ +0.002970] ? pci_bus_read_config_word+0x43/0x80
[ +0.002380] amdgpu_driver_load_kms+0x15/0x100 [amdgpu]
[ +0.002744] amdgpu_pci_probe+0x147/0x370 [amdgpu]
[ +0.002522] local_pci_probe+0x40/0x80
[ +0.001896] work_for_cpu_fn+0x10/0x20
[ +0.001892] process_one_work+0x26e/0x5a0
[ +0.002029] worker_thread+0x1fd/0x3e0
[ +0.001890] ? process_one_work+0x5a0/0x5a0
[ +0.002115] kthread+0xea/0x110
[ +0.001618] ? kthread_complete_and_exit+0x20/0x20
[ +0.002422] ret_from_fork+0x1f/0x30
[ +0.001808] </TASK>
[ +0.001103] irq event stamp: 59837
[ +0.001718] hardirqs last enabled at (59849): [<ffffffffb30fab12>] __up_console_sem+0x52/0x60
[ +0.004414] hardirqs last disabled at (59860): [<ffffffffb30faaf7>] __up_console_sem+0x37/0x60
[ +0.004414] softirqs last enabled at (59654): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130
[ +0.004205] softirqs last disabled at (59649): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130
[ +0.004203] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: prevent deadlock by moving j1939_sk_errqueue()
This commit addresses a deadlock situation that can occur in certain
scenarios, such as when running data TP/ETP transfer and subscribing to
the error queue while receiving a net down event. The deadlock involves
locks in the following order:
3
j1939_session_list_lock -> active_session_list_lock
j1939_session_activate
...
j1939_sk_queue_activate_next -> sk_session_queue_lock
...
j1939_xtp_rx_eoma_one
2
j1939_sk_queue_drop_all -> sk_session_queue_lock
...
j1939_sk_netdev_event_netdown -> j1939_socks_lock
j1939_netdev_notify
1
j1939_sk_errqueue -> j1939_socks_lock
__j1939_session_cancel -> active_session_list_lock
j1939_tp_rxtimer
CPU0 CPU1
---- ----
lock(&priv->active_session_list_lock);
lock(&jsk->sk_session_queue_lock);
lock(&priv->active_session_list_lock);
lock(&priv->j1939_socks_lock);
The solution implemented in this commit is to move the
j1939_sk_errqueue() call out of the active_session_list_lock context,
thus preventing the deadlock situation. |