| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix oops due to invalid pointer for kfree() in parse_longname()
This fixes a kernel oops when reading ceph snapshot directories (.snap),
for example by simply running `ls /mnt/my_ceph/.snap`.
The variable str is guarded by __free(kfree), but advanced by one for
skipping the initial '_' in snapshot names. Thus, kfree() is called
with an invalid pointer. This patch removes the need for advancing the
pointer so kfree() is called with correct memory pointer.
Steps to reproduce:
1. Create snapshots on a cephfs volume (I've 63 snaps in my testcase)
2. Add cephfs mount to fstab
$ echo "samba-fileserver@.files=/volumes/datapool/stuff/3461082b-ecc9-4e82-8549-3fd2590d3fb6 /mnt/test/stuff ceph acl,noatime,_netdev 0 0" >> /etc/fstab
3. Reboot the system
$ systemctl reboot
4. Check if it's really mounted
$ mount | grep stuff
5. List snapshots (expected 63 snapshots on my system)
$ ls /mnt/test/stuff/.snap
Now ls hangs forever and the kernel log shows the oops. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: avoid pool UAF
An UAF issue was observed:
BUG: KASAN: slab-use-after-free in page_counter_uncharge+0x65/0x150
Write of size 8 at addr ffff888106715440 by task insmod/527
CPU: 4 UID: 0 PID: 527 Comm: insmod 6.19.0-rc7-next-20260129+ #11
Tainted: [O]=OOT_MODULE
Call Trace:
<TASK>
dump_stack_lvl+0x82/0xd0
kasan_report+0xca/0x100
kasan_check_range+0x39/0x1c0
page_counter_uncharge+0x65/0x150
dmem_cgroup_uncharge+0x1f/0x260
Allocated by task 527:
Freed by task 0:
The buggy address belongs to the object at ffff888106715400
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 64 bytes inside of
freed 512-byte region [ffff888106715400, ffff888106715600)
The buggy address belongs to the physical page:
Memory state around the buggy address:
ffff888106715300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff888106715380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff888106715400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888106715480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888106715500: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
The issue occurs because a pool can still be held by a caller after its
associated memory region is unregistered. The current implementation frees
the pool even if users still hold references to it (e.g., before uncharge
operations complete).
This patch adds a reference counter to each pool, ensuring that a pool is
only freed when its reference count drops to zero. |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: correctly handle FDA objects of length zero
Fix a bug where an empty FDA (fd array) object with 0 fds would cause an
out-of-bounds error. The previous implementation used `skip == 0` to
mean "this is a pointer fixup", but 0 is also the correct skip length
for an empty FDA. If the FDA is at the end of the buffer, then this
results in an attempt to write 8-bytes out of bounds. This is caught and
results in an EINVAL error being returned to userspace.
The pattern of using `skip == 0` as a special value originates from the
C-implementation of Binder. As part of fixing this bug, this pattern is
replaced with a Rust enum.
I considered the alternate option of not pushing a fixup when the length
is zero, but I think it's cleaner to just get rid of the zero-is-special
stuff.
The root cause of this bug was diagnosed by Gemini CLI on first try. I
used the following prompt:
> There appears to be a bug in @drivers/android/binder/thread.rs where
> the Fixups oob bug is triggered with 316 304 316 324. This implies
> that we somehow ended up with a fixup where buffer A has a pointer to
> buffer B, but the pointer is located at an index in buffer A that is
> out of bounds. Please investigate the code to find the bug. You may
> compare with @drivers/android/binder.c that implements this correctly. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: iscsi: Fix use-after-free in iscsit_dec_session_usage_count()
In iscsit_dec_session_usage_count(), the function calls complete() while
holding the sess->session_usage_lock. Similar to the connection usage count
logic, the waiter signaled by complete() (e.g., in the session release
path) may wake up and free the iscsit_session structure immediately.
This creates a race condition where the current thread may attempt to
execute spin_unlock_bh() on a session structure that has already been
deallocated, resulting in a KASAN slab-use-after-free.
To resolve this, release the session_usage_lock before calling complete()
to ensure all dereferences of the sess pointer are finished before the
waiter is allowed to proceed with deallocation. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: aloop: Fix racy access at PCM trigger
The PCM trigger callback of aloop driver tries to check the PCM state
and stop the stream of the tied substream in the corresponding cable.
Since both check and stop operations are performed outside the cable
lock, this may result in UAF when a program attempts to trigger
frequently while opening/closing the tied stream, as spotted by
fuzzers.
For addressing the UAF, this patch changes two things:
- It covers the most of code in loopback_check_format() with
cable->lock spinlock, and add the proper NULL checks. This avoids
already some racy accesses.
- In addition, now we try to check the state of the capture PCM stream
that may be stopped in this function, which was the major pain point
leading to UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix NULL pointer dereference in ceph_mds_auth_match()
The CephFS kernel client has regression starting from 6.18-rc1.
We have issue in ceph_mds_auth_match() if fs_name == NULL:
const char fs_name = mdsc->fsc->mount_options->mds_namespace;
...
if (auth->match.fs_name && strcmp(auth->match.fs_name, fs_name)) {
/ fsname mismatch, try next one */
return 0;
}
Patrick Donnelly suggested that: In summary, we should definitely start
decoding `fs_name` from the MDSMap and do strict authorizations checks
against it. Note that the `-o mds_namespace=foo` should only be used for
selecting the file system to mount and nothing else. It's possible
no mds_namespace is specified but the kernel will mount the only
file system that exists which may have name "foo".
This patch reworks ceph_mdsmap_decode() and namespace_equals() with
the goal of supporting the suggested concept. Now struct ceph_mdsmap
contains m_fs_name field that receives copy of extracted FS name
by ceph_extract_encoded_string(). For the case of "old" CephFS file
systems, it is used "cephfs" name.
[ idryomov: replace redundant %*pE with %s in ceph_mdsmap_decode(),
get rid of a series of strlen() calls in ceph_namespace_match(),
drop changes to namespace_equals() body to avoid treating empty
mds_namespace as equal, drop changes to ceph_mdsc_handle_fsmap()
as namespace_equals() isn't an equivalent substitution there ] |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF in binder_netlink_report()
Oneway transactions sent to frozen targets via binder_proc_transaction()
return a BR_TRANSACTION_PENDING_FROZEN error but they are still treated
as successful since the target is expected to thaw at some point. It is
then not safe to access 't' after BR_TRANSACTION_PENDING_FROZEN errors
as the transaction could have been consumed by the now thawed target.
This is the case for binder_netlink_report() which derreferences 't'
after a pending frozen error, as pointed out by the following KASAN
report:
==================================================================
BUG: KASAN: slab-use-after-free in binder_netlink_report.isra.0+0x694/0x6c8
Read of size 8 at addr ffff00000f98ba38 by task binder-util/522
CPU: 4 UID: 0 PID: 522 Comm: binder-util Not tainted 6.19.0-rc6-00015-gc03e9c42ae8f #1 PREEMPT
Hardware name: linux,dummy-virt (DT)
Call trace:
binder_netlink_report.isra.0+0x694/0x6c8
binder_transaction+0x66e4/0x79b8
binder_thread_write+0xab4/0x4440
binder_ioctl+0x1fd4/0x2940
[...]
Allocated by task 522:
__kmalloc_cache_noprof+0x17c/0x50c
binder_transaction+0x584/0x79b8
binder_thread_write+0xab4/0x4440
binder_ioctl+0x1fd4/0x2940
[...]
Freed by task 488:
kfree+0x1d0/0x420
binder_free_transaction+0x150/0x234
binder_thread_read+0x2d08/0x3ce4
binder_ioctl+0x488/0x2940
[...]
==================================================================
Instead, make a transaction copy so the data can be safely accessed by
binder_netlink_report() after a pending frozen error. While here, add a
comment about not using t->buffer in binder_netlink_report(). |
| In the Linux kernel, the following vulnerability has been resolved:
HID: i2c-hid: fix potential buffer overflow in i2c_hid_get_report()
`i2c_hid_xfer` is used to read `recv_len + sizeof(__le16)` bytes of data
into `ihid->rawbuf`.
The former can come from the userspace in the hidraw driver and is only
bounded by HID_MAX_BUFFER_SIZE(16384) by default (unless we also set
`max_buffer_size` field of `struct hid_ll_driver` which we do not).
The latter has size determined at runtime by the maximum size of
different report types you could receive on any particular device and
can be a much smaller value.
Fix this by truncating `recv_len` to `ihid->bufsize - sizeof(__le16)`.
The impact is low since access to hidraw devices requires root. |
| In the Linux kernel, the following vulnerability has been resolved:
net: cpsw: Execute ndo_set_rx_mode callback in a work queue
Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this
change triggered the following call trace on my BeagleBone Black board:
WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/481
RTNL: assertion failed at net/8021q/vlan_core.c (236)
Modules linked in:
CPU: 0 UID: 997 PID: 481 Comm: rpcbind Not tainted 6.19.0-rc7-next-20260130-yocto-standard+ #35 PREEMPT
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x28/0x2c
show_stack from dump_stack_lvl+0x30/0x38
dump_stack_lvl from __warn+0xb8/0x11c
__warn from warn_slowpath_fmt+0x130/0x194
warn_slowpath_fmt from vlan_for_each+0x120/0x124
vlan_for_each from cpsw_add_mc_addr+0x54/0x98
cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec
__hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88
__dev_mc_add from igmp6_group_added+0x84/0xec
igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0
__ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4
__ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168
do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8
ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c
do_sock_setsockopt from __sys_setsockopt+0x84/0xac
__sys_setsockopt from ret_fast_syscall+0x0/0x54
This trace occurs because vlan_for_each() is called within
cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held.
Since modifying vlan_for_each() to operate without the RTNL lock is not
straightforward, and because ndo_set_rx_mode() is invoked both with and
without the RTNL lock across different code paths, simply adding
rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution.
To resolve this issue, we opt to execute the actual processing within
a work queue, following the approach used by the icssg-prueth driver.
Please note: To reproduce this issue, I manually reverted the changes to
am335x-bone-common.dtsi from commit c477358e66a3 ("ARM: dts: am335x-bone:
switch to new cpsw switch drv") in order to revert to the legacy cpsw
driver. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in EKA Software Computer Information Advertising Services Ltd. Real Estate Script V5 (With Doping Module – Store Module – New Language System) allows Cross-Site Scripting (XSS).This issue affects Real Estate Script V5 (With Doping Module – Store Module – New Language System): through 17022026.
NOTE: The vendor was contacted early about this disclosure but did not respond in any way. |
| The EventPrime plugin for WordPress is vulnerable to unauthorized image file upload in all versions up to, and including, 4.2.8.4. This is due to the plugin registering the upload_file_media AJAX action as publicly accessible (nopriv-enabled) without implementing any authentication, authorization, or nonce verification despite a nonce being created. This makes it possible for unauthenticated attackers to upload image files to the WordPress uploads directory and create Media Library attachments via the ep_upload_file_media endpoint. |
| Apache NiFi 1.1.0 through 2.7.2 are missing authorization when updating configuration properties on extension components that have specific Required Permissions based on the Restricted annotation. The Restricted annotation indicates additional privileges required to add the annotated component to the flow configuration, but framework authorization did not check restricted status when updating a component previously added. The missing authorization requires a more privileged user to add a restricted component to the flow configuration, but permits a less privileged user to make property configuration changes. Apache NiFi installations that do not implement different levels of authorization for Restricted components are not subject to this vulnerability because the framework enforces write permissions as the security boundary. Upgrading to Apache NiFi 2.8.0 is the recommended mitigation. |
| Emails sent by pretix can utilize placeholders that will be filled with customer data. For example, when {name}
is used in an email template, it will be replaced with the buyer's
name for the final email. This mechanism contained two security-relevant
bugs:
*
It was possible to exfiltrate information about the pretix system through specially crafted placeholder names such as {{event.__init__.__code__.co_filename}}.
This way, an attacker with the ability to control email templates
(usually every user of the pretix backend) could retrieve sensitive
information from the system configuration, including even database
passwords or API keys. pretix does include mechanisms to prevent the usage of such
malicious placeholders, however due to a mistake in the code, they were
not fully effective for the email subject.
*
Placeholders in subjects and plain text bodies of emails were
wrongfully evaluated twice. Therefore, if the first evaluation of a
placeholder again contains a placeholder, this second placeholder was
rendered. This allows the rendering of placeholders controlled by the
ticket buyer, and therefore the exploitation of the first issue as a
ticket buyer. Luckily, the only buyer-controlled placeholder available
in pretix by default (that is not validated in a way that prevents the
issue) is {invoice_company}, which is very unusual (but not
impossible) to be contained in an email subject template. In addition
to broadening the attack surface of the first issue, this could
theoretically also leak information about an order to one of the
attendees within that order. However, we also consider this scenario
very unlikely under typical conditions.
Out of caution, we recommend that you rotate all passwords and API keys contained in your pretix.cfg https://docs.pretix.eu/self-hosting/config/ file. |
| A security flaw has been discovered in tushar-2223 Hotel-Management-System up to bb1f3b3666124b888f1e4bcf51b6fba9fbb01d15. This affects an unknown part of the file /home.php of the component HTTP POST Request Handler. Performing a manipulation of the argument Name/Email results in sql injection. The attack can be initiated remotely. The exploit has been released to the public and may be used for attacks. Continious delivery with rolling releases is used by this product. Therefore, no version details of affected nor updated releases are available. The vendor was contacted early about this disclosure but did not respond in any way. |
| Crypt::URandom versions from 0.41 before 0.55 for Perl is vulnerable to a heap buffer overflow in the XS function crypt_urandom_getrandom().
The function does not validate that the length parameter is non-negative. If a negative value (e.g. -1) is supplied, the expression length + 1u causes an integer wraparound, resulting in a zero-byte allocation. The subsequent call to getrandom(data, length, GRND_NONBLOCK) passes the original negative value, which is implicitly converted to a large unsigned value (typically SIZE_MAX). This can result in writes beyond the allocated buffer, leading to heap memory corruption and application crash (denial of service).
In common usage, the length argument is typically hardcoded by the caller, which reduces the likelihood of attacker-controlled exploitation. Applications that pass untrusted input to this parameter may be affected. |
| Emails sent by pretix can utilize placeholders that will be filled with customer data. For example, when {name}
is used in an email template, it will be replaced with the buyer's
name for the final email. This mechanism contained a security-relevant bug:
It was possible to exfiltrate information about the pretix system through specially crafted placeholder names such as {{event.__init__.__code__.co_filename}}.
This way, an attacker with the ability to control email templates
(usually every user of the pretix backend) could retrieve sensitive
information from the system configuration, including even database
passwords or API keys. pretix does include mechanisms to prevent the usage of such
malicious placeholders, however due to a mistake in the code, they were
not fully effective for this plugin.
Out of caution, we recommend that you rotate all passwords and API keys contained in your pretix.cfg https://docs.pretix.eu/self-hosting/config/ file. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (acpi_power_meter) Fix deadlocks related to acpi_power_meter_notify()
The acpi_power_meter driver's .notify() callback function,
acpi_power_meter_notify(), calls hwmon_device_unregister() under a lock
that is also acquired by callbacks in sysfs attributes of the device
being unregistered which is prone to deadlocks between sysfs access and
device removal.
Address this by moving the hwmon device removal in
acpi_power_meter_notify() outside the lock in question, but notice
that doing it alone is not sufficient because two concurrent
METER_NOTIFY_CONFIG notifications may be attempting to remove the
same device at the same time. To prevent that from happening, add a
new lock serializing the execution of the switch () statement in
acpi_power_meter_notify(). For simplicity, it is a static mutex
which should not be a problem from the performance perspective.
The new lock also allows the hwmon_device_register_with_info()
in acpi_power_meter_notify() to be called outside the inner lock
because it prevents the other notifications handled by that function
from manipulating the "resource" object while the hwmon device based
on it is being registered. The sending of ACPI netlink messages from
acpi_power_meter_notify() is serialized by the new lock too which
generally helps to ensure that the order of handling firmware
notifications is the same as the order of sending netlink messages
related to them.
In addition, notice that hwmon_device_register_with_info() may fail
in which case resource->hwmon_dev will become an error pointer,
so add checks to avoid attempting to unregister the hwmon device
pointer to by it in that case to acpi_power_meter_notify() and
acpi_power_meter_remove(). |
| Emails sent by pretix can utilize placeholders that will be filled with customer data. For example, when {name}
is used in an email template, it will be replaced with the buyer's
name for the final email. This mechanism contained a security-relevant bug:
It was possible to exfiltrate information about the pretix system through specially crafted placeholder names such as {{event.__init__.__code__.co_filename}}.
This way, an attacker with the ability to control email templates
(usually every user of the pretix backend) could retrieve sensitive
information from the system configuration, including even database
passwords or API keys. pretix does include mechanisms to prevent the usage of such
malicious placeholders, however due to a mistake in the code, they were
not fully effective for this plugin.
Out of caution, we recommend that you rotate all passwords and API keys contained in your pretix.cfg file. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: fix NULL pointer dereference when setting max
An issue was triggered:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 15 UID: 0 PID: 658 Comm: bash Tainted: 6.19.0-rc6-next-2026012
Tainted: [O]=OOT_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
RIP: 0010:strcmp+0x10/0x30
RSP: 0018:ffffc900017f7dc0 EFLAGS: 00000246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff888107cd4358
RDX: 0000000019f73907 RSI: ffffffff82cc381a RDI: 0000000000000000
RBP: ffff8881016bef0d R08: 000000006c0e7145 R09: 0000000056c0e714
R10: 0000000000000001 R11: ffff888107cd4358 R12: 0007ffffffffffff
R13: ffff888101399200 R14: ffff888100fcb360 R15: 0007ffffffffffff
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000105c79000 CR4: 00000000000006f0
Call Trace:
<TASK>
dmemcg_limit_write.constprop.0+0x16d/0x390
? __pfx_set_resource_max+0x10/0x10
kernfs_fop_write_iter+0x14e/0x200
vfs_write+0x367/0x510
ksys_write+0x66/0xe0
do_syscall_64+0x6b/0x390
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f42697e1887
It was trriggered setting max without limitation, the command is like:
"echo test/region0 > dmem.max". To fix this issue, add check whether
options is valid after parsing the region_name. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: sync read disk super and set block size
When the user performs a btrfs mount, the block device is not set
correctly. The user sets the block size of the block device to 0x4000
by executing the BLKBSZSET command.
Since the block size change also changes the mapping->flags value, this
further affects the result of the mapping_min_folio_order() calculation.
Let's analyze the following two scenarios:
Scenario 1: Without executing the BLKBSZSET command, the block size is
0x1000, and mapping_min_folio_order() returns 0;
Scenario 2: After executing the BLKBSZSET command, the block size is
0x4000, and mapping_min_folio_order() returns 2.
do_read_cache_folio() allocates a folio before the BLKBSZSET command
is executed. This results in the allocated folio having an order value
of 0. Later, after BLKBSZSET is executed, the block size increases to
0x4000, and the mapping_min_folio_order() calculation result becomes 2.
This leads to two undesirable consequences:
1. filemap_add_folio() triggers a VM_BUG_ON_FOLIO(folio_order(folio) <
mapping_min_folio_order(mapping)) assertion.
2. The syzbot report [1] shows a null pointer dereference in
create_empty_buffers() due to a buffer head allocation failure.
Synchronization should be established based on the inode between the
BLKBSZSET command and read cache page to prevent inconsistencies in
block size or mapping flags before and after folio allocation.
[1]
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:create_empty_buffers+0x4d/0x480 fs/buffer.c:1694
Call Trace:
folio_create_buffers+0x109/0x150 fs/buffer.c:1802
block_read_full_folio+0x14c/0x850 fs/buffer.c:2403
filemap_read_folio+0xc8/0x2a0 mm/filemap.c:2496
do_read_cache_folio+0x266/0x5c0 mm/filemap.c:4096
do_read_cache_page mm/filemap.c:4162 [inline]
read_cache_page_gfp+0x29/0x120 mm/filemap.c:4195
btrfs_read_disk_super+0x192/0x500 fs/btrfs/volumes.c:1367 |