| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
octeon_ep: Fix memory leak in octep_device_setup()
In octep_device_setup(), if octep_ctrl_net_init() fails, the function
returns directly without unmapping the mapped resources and freeing the
allocated configuration memory.
Fix this by jumping to the unsupported_dev label, which performs the
necessary cleanup. This aligns with the error handling logic of other
paths in this function.
Compile tested only. Issue found using a prototype static analysis tool
and code review. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: Fix race between rfkill and nci_unregister_device().
syzbot reported the splat below [0] without a repro.
It indicates that struct nci_dev.cmd_wq had been destroyed before
nci_close_device() was called via rfkill.
nci_dev.cmd_wq is only destroyed in nci_unregister_device(), which
(I think) was called from virtual_ncidev_close() when syzbot close()d
an fd of virtual_ncidev.
The problem is that nci_unregister_device() destroys nci_dev.cmd_wq
first and then calls nfc_unregister_device(), which removes the
device from rfkill by rfkill_unregister().
So, the device is still visible via rfkill even after nci_dev.cmd_wq
is destroyed.
Let's unregister the device from rfkill first in nci_unregister_device().
Note that we cannot call nfc_unregister_device() before
nci_close_device() because
1) nfc_unregister_device() calls device_del() which frees
all memory allocated by devm_kzalloc() and linked to
ndev->conn_info_list
2) nci_rx_work() could try to queue nci_conn_info to
ndev->conn_info_list which could be leaked
Thus, nfc_unregister_device() is split into two functions so we
can remove rfkill interfaces only before nci_close_device().
[0]:
DEBUG_LOCKS_WARN_ON(1)
WARNING: kernel/locking/lockdep.c:238 at hlock_class kernel/locking/lockdep.c:238 [inline], CPU#0: syz.0.8675/6349
WARNING: kernel/locking/lockdep.c:238 at check_wait_context kernel/locking/lockdep.c:4854 [inline], CPU#0: syz.0.8675/6349
WARNING: kernel/locking/lockdep.c:238 at __lock_acquire+0x39d/0x2cf0 kernel/locking/lockdep.c:5187, CPU#0: syz.0.8675/6349
Modules linked in:
CPU: 0 UID: 0 PID: 6349 Comm: syz.0.8675 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/13/2026
RIP: 0010:hlock_class kernel/locking/lockdep.c:238 [inline]
RIP: 0010:check_wait_context kernel/locking/lockdep.c:4854 [inline]
RIP: 0010:__lock_acquire+0x3a4/0x2cf0 kernel/locking/lockdep.c:5187
Code: 18 00 4c 8b 74 24 08 75 27 90 e8 17 f2 fc 02 85 c0 74 1c 83 3d 50 e0 4e 0e 00 75 13 48 8d 3d 43 f7 51 0e 48 c7 c6 8b 3a de 8d <67> 48 0f b9 3a 90 31 c0 0f b6 98 c4 00 00 00 41 8b 45 20 25 ff 1f
RSP: 0018:ffffc9000c767680 EFLAGS: 00010046
RAX: 0000000000000001 RBX: 0000000000040000 RCX: 0000000000080000
RDX: ffffc90013080000 RSI: ffffffff8dde3a8b RDI: ffffffff8ff24ca0
RBP: 0000000000000003 R08: ffffffff8fef35a3 R09: 1ffffffff1fde6b4
R10: dffffc0000000000 R11: fffffbfff1fde6b5 R12: 00000000000012a2
R13: ffff888030338ba8 R14: ffff888030338000 R15: ffff888030338b30
FS: 00007fa5995f66c0(0000) GS:ffff8881256f8000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7e72f842d0 CR3: 00000000485a0000 CR4: 00000000003526f0
Call Trace:
<TASK>
lock_acquire+0x106/0x330 kernel/locking/lockdep.c:5868
touch_wq_lockdep_map+0xcb/0x180 kernel/workqueue.c:3940
__flush_workqueue+0x14b/0x14f0 kernel/workqueue.c:3982
nci_close_device+0x302/0x630 net/nfc/nci/core.c:567
nci_dev_down+0x3b/0x50 net/nfc/nci/core.c:639
nfc_dev_down+0x152/0x290 net/nfc/core.c:161
nfc_rfkill_set_block+0x2d/0x100 net/nfc/core.c:179
rfkill_set_block+0x1d2/0x440 net/rfkill/core.c:346
rfkill_fop_write+0x461/0x5a0 net/rfkill/core.c:1301
vfs_write+0x29a/0xb90 fs/read_write.c:684
ksys_write+0x150/0x270 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xe2/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa59b39acb9
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 e8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fa5995f6028 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007fa59b615fa0 RCX: 00007fa59b39acb9
RDX: 0000000000000008 RSI: 0000200000000080 RDI: 0000000000000007
RBP: 00007fa59b408bf7 R08:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
igc: Reduce TSN TX packet buffer from 7KB to 5KB per queue
The previous 7 KB per queue caused TX unit hangs under heavy
timestamping load. Reducing to 5 KB avoids these hangs and matches
the TSN recommendation in I225/I226 SW User Manual Section 7.5.4.
The 8 KB "freed" by this change is currently unused. This reduction
is not expected to impact throughput, as the i226 is PCIe-limited
for small TSN packets rather than TX-buffer-limited. |
| In the Linux kernel, the following vulnerability has been resolved:
interconnect: debugfs: initialize src_node and dst_node to empty strings
The debugfs_create_str() API assumes that the string pointer is either NULL
or points to valid kmalloc() memory. Leaving the pointer uninitialized can
cause problems.
Initialize src_node and dst_node to empty strings before creating the
debugfs entries to guarantee that reads and writes are safe. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dma_free_coherent() pointer
dma_alloc_coherent() allocates a DMA mapped buffer and stores the
addresses in XXX_unaligned fields. Those should be reused when freeing
the buffer rather than the aligned addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: send: check for inline extents in range_is_hole_in_parent()
Before accessing the disk_bytenr field of a file extent item we need
to check if we are dealing with an inline extent.
This is because for inline extents their data starts at the offset of
the disk_bytenr field. So accessing the disk_bytenr
means we are accessing inline data or in case the inline data is less
than 8 bytes we can actually cause an invalid
memory access if this inline extent item is the first item in the leaf
or access metadata from other items. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs-scheme: cleanup access_pattern subdirs on scheme dir setup failure
When a DAMOS-scheme DAMON sysfs directory setup fails after setup of
access_pattern/ directory, subdirectories of access_pattern/ directory are
not cleaned up. As a result, DAMON sysfs interface is nearly broken until
the system reboots, and the memory for the unremoved directory is leaked.
Cleanup the directories under such failures. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: cleanup attrs subdirs on context dir setup failure
When a context DAMON sysfs directory setup is failed after setup of attrs/
directory, subdirectories of attrs/ directory are not cleaned up. As a
result, DAMON sysfs interface is nearly broken until the system reboots,
and the memory for the unremoved directory is leaked.
Cleanup the directories under such failures. |
| The Chatbot for WordPress by Collect.chat plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the '_inpost_head_script[synth_header_script]' post meta field in all versions up to, and including, 2.4.8 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The QuestionPro Surveys plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'questionpro' shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Do not allow userspace to trigger kernel warnings in drm_gem_change_handle_ioctl()
Since GEM bo handles are u32 in the uapi and the internal implementation
uses idr_alloc() which uses int ranges, passing a new handle larger than
INT_MAX trivially triggers a kernel warning:
idr_alloc():
...
if (WARN_ON_ONCE(start < 0))
return -EINVAL;
...
Fix it by rejecting new handles above INT_MAX and at the same time make
the end limit calculation more obvious by moving into int domain. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath10k: fix dma_free_coherent() pointer
dma_alloc_coherent() allocates a DMA mapped buffer and stores the
addresses in XXX_unaligned fields. Those should be reused when freeing
the buffer rather than the aligned addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
of: unittest: Fix memory leak in unittest_data_add()
In unittest_data_add(), if of_resolve_phandles() fails, the allocated
unittest_data is not freed, leading to a memory leak.
Fix this by using scope-based cleanup helper __free(kfree) for automatic
resource cleanup. This ensures unittest_data is automatically freed when
it goes out of scope in error paths.
For the success path, use retain_and_null_ptr() to transfer ownership
of the memory to the device tree and prevent double freeing. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix segmentation of forwarding fraglist GRO
This patch enhances GSO segment handling by properly checking
the SKB_GSO_DODGY flag for frag_list GSO packets, addressing
low throughput issues observed when a station accesses IPv4
servers via hotspots with an IPv6-only upstream interface.
Specifically, it fixes a bug in GSO segmentation when forwarding
GRO packets containing a frag_list. The function skb_segment_list
cannot correctly process GRO skbs that have been converted by XLAT,
since XLAT only translates the header of the head skb. Consequently,
skbs in the frag_list may remain untranslated, resulting in protocol
inconsistencies and reduced throughput.
To address this, the patch explicitly sets the SKB_GSO_DODGY flag
for GSO packets in XLAT's IPv4/IPv6 protocol translation helpers
(bpf_skb_proto_4_to_6 and bpf_skb_proto_6_to_4). This marks GSO
packets as potentially modified after protocol translation. As a
result, GSO segmentation will avoid using skb_segment_list and
instead falls back to skb_segment for packets with the SKB_GSO_DODGY
flag. This ensures that only safe and fully translated frag_list
packets are processed by skb_segment_list, resolving protocol
inconsistencies and improving throughput when forwarding GRO packets
converted by XLAT. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/imx/tve: fix probe device leak
Make sure to drop the reference taken to the DDC device during probe on
probe failure (e.g. probe deferral) and on driver unbind. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: correctly decode TTLM with default link map
TID-To-Link Mapping (TTLM) elements do not contain any link mapping
presence indicator if a default mapping is used and parsing needs to be
skipped.
Note that access points should not explicitly report an advertised TTLM
with a default mapping as that is the implied mapping if the element is
not included, this is even the case when switching back to the default
mapping. However, mac80211 would incorrectly parse the frame and would
also read one byte beyond the end of the element. |
| The MDirector Newsletter plugin for WordPress is vulnerable to Cross-Site Request Forgery in all versions up to, and including, 4.5.8. This is due to missing nonce verification on the mdirectorNewsletterSave function. This makes it possible for unauthenticated attackers to update the plugin's settings via a forged request granted they can trick a site administrator into performing an action such as clicking on a link. |
| A security flaw has been discovered in yued-fe LuLu UI up to 3.0.0. This issue affects the function child_process.exec of the file run.js. The manipulation results in os command injection. The attack can be launched remotely. The vendor was contacted early about this disclosure but did not respond in any way. |
| A flaw has been found in Tosei Self-service Washing Machine 4.02. Impacted is an unknown function of the file /cgi-bin/tosei_datasend.php. Executing a manipulation of the argument adr_txt_1 can lead to command injection. It is possible to launch the attack remotely. The exploit has been published and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Prevent excessive number of frames
In this case, the user constructed the parameters with maxpacksize 40
for rate 22050 / pps 1000, and packsize[0] 22 packsize[1] 23. The buffer
size for each data URB is maxpacksize * packets, which in this example
is 40 * 6 = 240; When the user performs a write operation to send audio
data into the ALSA PCM playback stream, the calculated number of frames
is packsize[0] * packets = 264, which exceeds the allocated URB buffer
size, triggering the out-of-bounds (OOB) issue reported by syzbot [1].
Added a check for the number of single data URB frames when calculating
the number of frames to prevent [1].
[1]
BUG: KASAN: slab-out-of-bounds in copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
Write of size 264 at addr ffff88804337e800 by task syz.0.17/5506
Call Trace:
copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
prepare_playback_urb+0x953/0x13d0 sound/usb/pcm.c:1611
prepare_outbound_urb+0x377/0xc50 sound/usb/endpoint.c:333 |