Search Results (16668 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-54088 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: hold queue_lock when removing blkg->q_node When blkg is removed from q->blkg_list from blkg_free_workfn(), queue_lock has to be held, otherwise, all kinds of bugs(list corruption, hard lockup, ..) can be triggered from blkg_destroy_all().
CVE-2023-54060 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd: Set end correctly when doing batch carry Even though the test suite covers this it somehow became obscured that this wasn't working. The test iommufd_ioas.mock_domain.access_domain_destory would blow up rarely. end should be set to 1 because this just pushed an item, the carry, to the pfns list. Sometimes the test would blow up with: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 5 PID: 584 Comm: iommufd Not tainted 6.5.0-rc1-dirty #1236 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:batch_unpin+0xa2/0x100 [iommufd] Code: 17 48 81 fe ff ff 07 00 77 70 48 8b 15 b7 be 97 e2 48 85 d2 74 14 48 8b 14 fa 48 85 d2 74 0b 40 0f b6 f6 48 c1 e6 04 48 01 f2 <48> 8b 3a 48 c1 e0 06 89 ca 48 89 de 48 83 e7 f0 48 01 c7 e8 96 dc RSP: 0018:ffffc90001677a58 EFLAGS: 00010246 RAX: 00007f7e2646f000 RBX: 0000000000000000 RCX: 0000000000000001 RDX: 0000000000000000 RSI: 00000000fefc4c8d RDI: 0000000000fefc4c RBP: ffffc90001677a80 R08: 0000000000000048 R09: 0000000000000200 R10: 0000000000030b98 R11: ffffffff81f3bb40 R12: 0000000000000001 R13: ffff888101f75800 R14: ffffc90001677ad0 R15: 00000000000001fe FS: 00007f9323679740(0000) GS:ffff8881ba540000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000105ede003 CR4: 00000000003706a0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? show_regs+0x5c/0x70 ? __die+0x1f/0x60 ? page_fault_oops+0x15d/0x440 ? lock_release+0xbc/0x240 ? exc_page_fault+0x4a4/0x970 ? asm_exc_page_fault+0x27/0x30 ? batch_unpin+0xa2/0x100 [iommufd] ? batch_unpin+0xba/0x100 [iommufd] __iopt_area_unfill_domain+0x198/0x430 [iommufd] ? __mutex_lock+0x8c/0xb80 ? __mutex_lock+0x6aa/0xb80 ? xa_erase+0x28/0x30 ? iopt_table_remove_domain+0x162/0x320 [iommufd] ? lock_release+0xbc/0x240 iopt_area_unfill_domain+0xd/0x10 [iommufd] iopt_table_remove_domain+0x195/0x320 [iommufd] iommufd_hw_pagetable_destroy+0xb3/0x110 [iommufd] iommufd_object_destroy_user+0x8e/0xf0 [iommufd] iommufd_device_detach+0xc5/0x140 [iommufd] iommufd_selftest_destroy+0x1f/0x70 [iommufd] iommufd_object_destroy_user+0x8e/0xf0 [iommufd] iommufd_destroy+0x3a/0x50 [iommufd] iommufd_fops_ioctl+0xfb/0x170 [iommufd] __x64_sys_ioctl+0x40d/0x9a0 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2023-54100 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: qedi: Fix use after free bug in qedi_remove() In qedi_probe() we call __qedi_probe() which initializes &qedi->recovery_work with qedi_recovery_handler() and &qedi->board_disable_work with qedi_board_disable_work(). When qedi_schedule_recovery_handler() is called, schedule_delayed_work() will finally start the work. In qedi_remove(), which is called to remove the driver, the following sequence may be observed: Fix this by finishing the work before cleanup in qedi_remove(). CPU0 CPU1 |qedi_recovery_handler qedi_remove | __qedi_remove | iscsi_host_free | scsi_host_put | //free shost | |iscsi_host_for_each_session |//use qedi->shost Cancel recovery_work and board_disable_work in __qedi_remove().
CVE-2023-54052 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921: fix skb leak by txs missing in AMSDU txs may be dropped if the frame is aggregated in AMSDU. When the problem shows up, some SKBs would be hold in driver to cause network stopped temporarily. Even if the problem can be recovered by txs timeout handling, mt7921 still need to disable txs in AMSDU to avoid this issue.
CVE-2023-54055 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix memory leak of PBLE objects On rmmod of irdma, the PBLE object memory is not being freed. PBLE object memory are not statically pre-allocated at function initialization time unlike other HMC objects. PBLEs objects and the Segment Descriptors (SD) for it can be dynamically allocated during scale up and SD's remain allocated till function deinitialization. Fix this leak by adding IRDMA_HMC_IW_PBLE to the iw_hmc_obj_types[] table and skip pbles in irdma_create_hmc_obj but not in irdma_del_hmc_objects().
CVE-2023-54050 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix memleak when insert_old_idx() failed Following process will cause a memleak for copied up znode: dirty_cow_znode zn = copy_znode(c, znode); err = insert_old_idx(c, zbr->lnum, zbr->offs); if (unlikely(err)) return ERR_PTR(err); // No one refers to zn. Fetch a reproducer in [Link]. Function copy_znode() is split into 2 parts: resource allocation and znode replacement, insert_old_idx() is split in similar way, so resource cleanup could be done in error handling path without corrupting metadata(mem & disk). It's okay that old index inserting is put behind of add_idx_dirt(), old index is used in layout_leb_in_gaps(), so the two processes do not depend on each other.
CVE-2023-54046 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: essiv - Handle EBUSY correctly As it is essiv only handles the special return value of EINPROGERSS, which means that in all other cases it will free data related to the request. However, as the caller of essiv may specify MAY_BACKLOG, we also need to expect EBUSY and treat it in the same way. Otherwise backlogged requests will trigger a use-after-free.
CVE-2023-54045 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: audit: fix possible soft lockup in __audit_inode_child() Tracefs or debugfs maybe cause hundreds to thousands of PATH records, too many PATH records maybe cause soft lockup. For example: 1. CONFIG_KASAN=y && CONFIG_PREEMPTION=n 2. auditctl -a exit,always -S open -k key 3. sysctl -w kernel.watchdog_thresh=5 4. mkdir /sys/kernel/debug/tracing/instances/test There may be a soft lockup as follows: watchdog: BUG: soft lockup - CPU#45 stuck for 7s! [mkdir:15498] Kernel panic - not syncing: softlockup: hung tasks Call trace: dump_backtrace+0x0/0x30c show_stack+0x20/0x30 dump_stack+0x11c/0x174 panic+0x27c/0x494 watchdog_timer_fn+0x2bc/0x390 __run_hrtimer+0x148/0x4fc __hrtimer_run_queues+0x154/0x210 hrtimer_interrupt+0x2c4/0x760 arch_timer_handler_phys+0x48/0x60 handle_percpu_devid_irq+0xe0/0x340 __handle_domain_irq+0xbc/0x130 gic_handle_irq+0x78/0x460 el1_irq+0xb8/0x140 __audit_inode_child+0x240/0x7bc tracefs_create_file+0x1b8/0x2a0 trace_create_file+0x18/0x50 event_create_dir+0x204/0x30c __trace_add_new_event+0xac/0x100 event_trace_add_tracer+0xa0/0x130 trace_array_create_dir+0x60/0x140 trace_array_create+0x1e0/0x370 instance_mkdir+0x90/0xd0 tracefs_syscall_mkdir+0x68/0xa0 vfs_mkdir+0x21c/0x34c do_mkdirat+0x1b4/0x1d4 __arm64_sys_mkdirat+0x4c/0x60 el0_svc_common.constprop.0+0xa8/0x240 do_el0_svc+0x8c/0xc0 el0_svc+0x20/0x30 el0_sync_handler+0xb0/0xb4 el0_sync+0x160/0x180 Therefore, we add cond_resched() to __audit_inode_child() to fix it.
CVE-2023-54048 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Prevent handling any completions after qp destroy HW may generate completions that indicates QP is destroyed. Driver should not be scheduling any more completion handlers for this QP, after the QP is destroyed. Since CQs are active during the QP destroy, driver may still schedule completion handlers. This can cause a race where the destroy_cq and poll_cq running simultaneously. Snippet of kernel panic while doing bnxt_re driver load unload in loop. This indicates a poll after the CQ is freed.  [77786.481636] Call Trace: [77786.481640]  <TASK> [77786.481644]  bnxt_re_poll_cq+0x14a/0x620 [bnxt_re] [77786.481658]  ? kvm_clock_read+0x14/0x30 [77786.481693]  __ib_process_cq+0x57/0x190 [ib_core] [77786.481728]  ib_cq_poll_work+0x26/0x80 [ib_core] [77786.481761]  process_one_work+0x1e5/0x3f0 [77786.481768]  worker_thread+0x50/0x3a0 [77786.481785]  ? __pfx_worker_thread+0x10/0x10 [77786.481790]  kthread+0xe2/0x110 [77786.481794]  ? __pfx_kthread+0x10/0x10 [77786.481797]  ret_from_fork+0x2c/0x50 To avoid this, complete all completion handlers before returning the destroy QP. If free_cq is called soon after destroy_qp, IB stack will cancel the CQ work before invoking the destroy_cq verb and this will prevent any race mentioned.
CVE-2023-54051 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: do not allow gso_size to be set to GSO_BY_FRAGS One missing check in virtio_net_hdr_to_skb() allowed syzbot to crash kernels again [1] Do not allow gso_size to be set to GSO_BY_FRAGS (0xffff), because this magic value is used by the kernel. [1] general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077] CPU: 0 PID: 5039 Comm: syz-executor401 Not tainted 6.5.0-rc5-next-20230809-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023 RIP: 0010:skb_segment+0x1a52/0x3ef0 net/core/skbuff.c:4500 Code: 00 00 00 e9 ab eb ff ff e8 6b 96 5d f9 48 8b 84 24 00 01 00 00 48 8d 78 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e ea 21 00 00 48 8b 84 24 00 01 RSP: 0018:ffffc90003d3f1c8 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 000000000001fffe RCX: 0000000000000000 RDX: 000000000000000e RSI: ffffffff882a3115 RDI: 0000000000000070 RBP: ffffc90003d3f378 R08: 0000000000000005 R09: 000000000000ffff R10: 000000000000ffff R11: 5ee4a93e456187d6 R12: 000000000001ffc6 R13: dffffc0000000000 R14: 0000000000000008 R15: 000000000000ffff FS: 00005555563f2380(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020020000 CR3: 000000001626d000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> udp6_ufo_fragment+0x9d2/0xd50 net/ipv6/udp_offload.c:109 ipv6_gso_segment+0x5c4/0x17b0 net/ipv6/ip6_offload.c:120 skb_mac_gso_segment+0x292/0x610 net/core/gso.c:53 __skb_gso_segment+0x339/0x710 net/core/gso.c:124 skb_gso_segment include/net/gso.h:83 [inline] validate_xmit_skb+0x3a5/0xf10 net/core/dev.c:3625 __dev_queue_xmit+0x8f0/0x3d60 net/core/dev.c:4329 dev_queue_xmit include/linux/netdevice.h:3082 [inline] packet_xmit+0x257/0x380 net/packet/af_packet.c:276 packet_snd net/packet/af_packet.c:3087 [inline] packet_sendmsg+0x24c7/0x5570 net/packet/af_packet.c:3119 sock_sendmsg_nosec net/socket.c:727 [inline] sock_sendmsg+0xd9/0x180 net/socket.c:750 ____sys_sendmsg+0x6ac/0x940 net/socket.c:2496 ___sys_sendmsg+0x135/0x1d0 net/socket.c:2550 __sys_sendmsg+0x117/0x1e0 net/socket.c:2579 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7ff27cdb34d9
CVE-2023-54130 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: hfs/hfsplus: avoid WARN_ON() for sanity check, use proper error handling Commit 55d1cbbbb29e ("hfs/hfsplus: use WARN_ON for sanity check") fixed a build warning by turning a comment into a WARN_ON(), but it turns out that syzbot then complains because it can trigger said warning with a corrupted hfs image. The warning actually does warn about a bad situation, but we are much better off just handling it as the error it is. So rather than warn about us doing bad things, stop doing the bad things and return -EIO. While at it, also fix a memory leak that was introduced by an earlier fix for a similar syzbot warning situation, and add a check for one case that historically wasn't handled at all (ie neither comment nor subsequent WARN_ON).
CVE-2023-54043 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd: Do not add the same hwpt to the ioas->hwpt_list twice The hwpt is added to the hwpt_list only during its creation, it is never added again. This hunk is some missed leftover from rework. Adding it twice will corrupt the linked list in some cases. It effects HWPT specific attachment, which is something the test suite cannot cover until we can create a legitimate struct device with a non-system iommu "driver" (ie we need the bus removed from the iommu code)
CVE-2023-54044 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: spmi: Add a check for remove callback when removing a SPMI driver When removing a SPMI driver, there can be a crash due to NULL pointer dereference if it does not have a remove callback defined. This is one such call trace observed when removing the QCOM SPMI PMIC driver: dump_backtrace.cfi_jt+0x0/0x8 dump_stack_lvl+0xd8/0x16c panic+0x188/0x498 __cfi_slowpath+0x0/0x214 __cfi_slowpath+0x1dc/0x214 spmi_drv_remove+0x16c/0x1e0 device_release_driver_internal+0x468/0x79c driver_detach+0x11c/0x1a0 bus_remove_driver+0xc4/0x124 driver_unregister+0x58/0x84 cleanup_module+0x1c/0xc24 [qcom_spmi_pmic] __do_sys_delete_module+0x3ec/0x53c __arm64_sys_delete_module+0x18/0x28 el0_svc_common+0xdc/0x294 el0_svc+0x38/0x9c el0_sync_handler+0x8c/0xf0 el0_sync+0x1b4/0x1c0 If a driver has all its resources allocated through devm_() APIs and does not need any other explicit cleanup, it would not require a remove callback to be defined. Hence, add a check for remove callback presence before calling it when removing a SPMI driver.
CVE-2023-54083 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: phy: tegra: xusb: Clear the driver reference in usb-phy dev For the dual-role port, it will assign the phy dev to usb-phy dev and use the port dev driver as the dev driver of usb-phy. When we try to destroy the port dev, it will destroy its dev driver as well. But we did not remove the reference from usb-phy dev. This might cause the use-after-free issue in KASAN.
CVE-2023-54056 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kheaders: Use array declaration instead of char Under CONFIG_FORTIFY_SOURCE, memcpy() will check the size of destination and source buffers. Defining kernel_headers_data as "char" would trip this check. Since these addresses are treated as byte arrays, define them as arrays (as done everywhere else). This was seen with: $ cat /sys/kernel/kheaders.tar.xz >> /dev/null detected buffer overflow in memcpy kernel BUG at lib/string_helpers.c:1027! ... RIP: 0010:fortify_panic+0xf/0x20 [...] Call Trace: <TASK> ikheaders_read+0x45/0x50 [kheaders] kernfs_fop_read_iter+0x1a4/0x2f0 ...
CVE-2023-54064 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipmi:ssif: Fix a memory leak when scanning for an adapter The adapter scan ssif_info_find() sets info->adapter_name if the adapter info came from SMBIOS, as it's not set in that case. However, this function can be called more than once, and it will leak the adapter name if it had already been set. So check for NULL before setting it.
CVE-2023-54098 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gvt: fix gvt debugfs destroy When gvt debug fs is destroyed, need to have a sane check if drm minor's debugfs root is still available or not, otherwise in case like device remove through unbinding, drm minor's debugfs directory has already been removed, then intel_gvt_debugfs_clean() would act upon dangling pointer like below oops. i915 0000:00:02.0: Direct firmware load for i915/gvt/vid_0x8086_did_0x1926_rid_0x0a.golden_hw_state failed with error -2 i915 0000:00:02.0: MDEV: Registered Console: switching to colour dummy device 80x25 i915 0000:00:02.0: MDEV: Unregistering BUG: kernel NULL pointer dereference, address: 00000000000000a0 PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP PTI CPU: 2 PID: 2486 Comm: gfx-unbind.sh Tainted: G I 6.1.0-rc8+ #15 Hardware name: Dell Inc. XPS 13 9350/0JXC1H, BIOS 1.13.0 02/10/2020 RIP: 0010:down_write+0x1f/0x90 Code: 1d ff ff 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 53 48 89 fb e8 62 c0 ff ff bf 01 00 00 00 e8 28 5e 31 ff 31 c0 ba 01 00 00 00 <f0> 48 0f b1 13 75 33 65 48 8b 04 25 c0 bd 01 00 48 89 43 08 bf 01 RSP: 0018:ffff9eb3036ffcc8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 00000000000000a0 RCX: ffffff8100000000 RDX: 0000000000000001 RSI: 0000000000000064 RDI: ffffffffa48787a8 RBP: ffff9eb3036ffd30 R08: ffffeb1fc45a0608 R09: ffffeb1fc45a05c0 R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000 R13: ffff91acc33fa328 R14: ffff91acc033f080 R15: ffff91acced533e0 FS: 00007f6947bba740(0000) GS:ffff91ae36d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000a0 CR3: 00000001133a2002 CR4: 00000000003706e0 Call Trace: <TASK> simple_recursive_removal+0x9f/0x2a0 ? start_creating.part.0+0x120/0x120 ? _raw_spin_lock+0x13/0x40 debugfs_remove+0x40/0x60 intel_gvt_debugfs_clean+0x15/0x30 [kvmgt] intel_gvt_clean_device+0x49/0xe0 [kvmgt] intel_gvt_driver_remove+0x2f/0xb0 i915_driver_remove+0xa4/0xf0 i915_pci_remove+0x1a/0x30 pci_device_remove+0x33/0xa0 device_release_driver_internal+0x1b2/0x230 unbind_store+0xe0/0x110 kernfs_fop_write_iter+0x11b/0x1f0 vfs_write+0x203/0x3d0 ksys_write+0x63/0xe0 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6947cb5190 Code: 40 00 48 8b 15 71 9c 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d 51 24 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89 RSP: 002b:00007ffcbac45a28 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f6947cb5190 RDX: 000000000000000d RSI: 0000555e35c866a0 RDI: 0000000000000001 RBP: 0000555e35c866a0 R08: 0000000000000002 R09: 0000555e358cb97c R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000001 R13: 000000000000000d R14: 0000000000000000 R15: 0000555e358cb8e0 </TASK> Modules linked in: kvmgt CR2: 00000000000000a0 ---[ end trace 0000000000000000 ]---
CVE-2023-54080 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: skip splitting and logical rewriting on pre-alloc write When doing a relocation, there is a chance that at the time of btrfs_reloc_clone_csums(), there is no checksum for the corresponding region. In this case, btrfs_finish_ordered_zoned()'s sum points to an invalid item and so ordered_extent's logical is set to some invalid value. Then, btrfs_lookup_block_group() in btrfs_zone_finish_endio() failed to find a block group and will hit an assert or a null pointer dereference as following. This can be reprodcued by running btrfs/028 several times (e.g, 4 to 16 times) with a null_blk setup. The device's zone size and capacity is set to 32 MB and the storage size is set to 5 GB on my setup. KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f] CPU: 6 PID: 3105720 Comm: kworker/u16:13 Tainted: G W 6.5.0-rc6-kts+ #1 Hardware name: Supermicro Super Server/X10SRL-F, BIOS 2.0 12/17/2015 Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] RIP: 0010:btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] Code: 41 54 49 89 fc 55 48 89 f5 53 e8 57 7d fc ff 48 8d b8 88 00 00 00 48 89 c3 48 b8 00 00 00 00 00 > 3c 02 00 0f 85 02 01 00 00 f6 83 88 00 00 00 01 0f 84 a8 00 00 RSP: 0018:ffff88833cf87b08 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000011 RSI: 0000000000000004 RDI: 0000000000000088 RBP: 0000000000000002 R08: 0000000000000001 R09: ffffed102877b827 R10: ffff888143bdc13b R11: ffff888125b1cbc0 R12: ffff888143bdc000 R13: 0000000000007000 R14: ffff888125b1cba8 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88881e500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3ed85223d5 CR3: 00000001519b4005 CR4: 00000000001706e0 Call Trace: <TASK> ? die_addr+0x3c/0xa0 ? exc_general_protection+0x148/0x220 ? asm_exc_general_protection+0x22/0x30 ? btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] ? btrfs_zone_finish_endio.part.0+0x19/0x160 [btrfs] btrfs_finish_one_ordered+0x7b8/0x1de0 [btrfs] ? rcu_is_watching+0x11/0xb0 ? lock_release+0x47a/0x620 ? btrfs_finish_ordered_zoned+0x59b/0x800 [btrfs] ? __pfx_btrfs_finish_one_ordered+0x10/0x10 [btrfs] ? btrfs_finish_ordered_zoned+0x358/0x800 [btrfs] ? __smp_call_single_queue+0x124/0x350 ? rcu_is_watching+0x11/0xb0 btrfs_work_helper+0x19f/0xc60 [btrfs] ? __pfx_try_to_wake_up+0x10/0x10 ? _raw_spin_unlock_irq+0x24/0x50 ? rcu_is_watching+0x11/0xb0 process_one_work+0x8c1/0x1430 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_process_one_work+0x10/0x10 ? __pfx_do_raw_spin_lock+0x10/0x10 ? _raw_spin_lock_irq+0x52/0x60 worker_thread+0x100/0x12c0 ? __kthread_parkme+0xc1/0x1f0 ? __pfx_worker_thread+0x10/0x10 kthread+0x2ea/0x3c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> On the zoned mode, writing to pre-allocated region means data relocation write. Such write always uses WRITE command so there is no need of splitting and rewriting logical address. Thus, we can just skip the function for the case.
CVE-2023-54057 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/amd: Add a length limitation for the ivrs_acpihid command-line parameter The 'acpiid' buffer in the parse_ivrs_acpihid function may overflow, because the string specifier in the format string sscanf() has no width limitation. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2023-54101 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: driver: soc: xilinx: use _safe loop iterator to avoid a use after free The hash_for_each_possible() loop dereferences "eve_data" to get the next item on the list. However the loop frees eve_data so it leads to a use after free. Use hash_for_each_possible_safe() instead.