| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| TFTP Turbo 4.6.1273 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious executables that will be launched with LocalSystem permissions. |
| DHCP Turbo 4.61298 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code by exploiting the service binary path. Attackers can place malicious executables in the service path to gain elevated privileges when the service starts. |
| BOOTP Turbo 2.0.1214 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted executable path to inject malicious code that will be executed when the service starts with LocalSystem permissions. |
| Veritas NetBackup 7.0 contains an unquoted service path vulnerability in the NetBackup INET Daemon service that allows local users to potentially execute arbitrary code. Attackers can exploit the unquoted path in C:\Program Files\Veritas\NetBackup\bin\bpinetd.exe to inject malicious code that would execute with elevated LocalSystem privileges. |
| Avast SecureLine 5.5.522.0 contains an unquoted service path vulnerability that allows local users to potentially execute code with elevated system privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious code that would execute with LocalSystem account permissions during service startup. |
| SunFounder Pironman Dashboard (pm_dashboard) version 1.3.13 and prior contain a path traversal vulnerability in the log file API endpoints. An unauthenticated remote attacker can supply traversal sequences via the filename parameter to read and delete arbitrary files. Successful exploitation can disclose sensitive information and delete critical system files, resulting in data loss and potential system compromise or denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gud: fix NULL fb and crtc dereferences on USB disconnect
On disconnect drm_atomic_helper_disable_all() is called which
sets both the fb and crtc for a plane to NULL before invoking a commit.
This causes a kernel oops on every display disconnect.
Add guards for those dereferences. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/userq: Fix fence reference leak on queue teardown v2
The user mode queue keeps a pointer to the most recent fence in
userq->last_fence. This pointer holds an extra dma_fence reference.
When the queue is destroyed, we free the fence driver and its xarray,
but we forgot to drop the last_fence reference.
Because of the missing dma_fence_put(), the last fence object can stay
alive when the driver unloads. This leaves an allocated object in the
amdgpu_userq_fence slab cache and triggers
This is visible during driver unload as:
BUG amdgpu_userq_fence: Objects remaining on __kmem_cache_shutdown()
kmem_cache_destroy amdgpu_userq_fence: Slab cache still has objects
Call Trace:
kmem_cache_destroy
amdgpu_userq_fence_slab_fini
amdgpu_exit
__do_sys_delete_module
Fix this by putting userq->last_fence and clearing the pointer during
amdgpu_userq_fence_driver_free().
This makes sure the fence reference is released and the slab cache is
empty when the module exits.
v2: Update to only release userq->last_fence with dma_fence_put()
(Christian)
(cherry picked from commit 8e051e38a8d45caf6a866d4ff842105b577953bb) |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_ipi_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_ipi_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leak in idpf_vport_rel()
Free vport->rx_ptype_lkup in idpf_vport_rel() to avoid leaking memory
during a reset. Reported by kmemleak:
unreferenced object 0xff450acac838a000 (size 4096):
comm "kworker/u258:5", pid 7732, jiffies 4296830044
hex dump (first 32 bytes):
00 00 00 00 00 10 00 00 00 10 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 ................
backtrace (crc 3da81902):
__kmalloc_cache_noprof+0x469/0x7a0
idpf_send_get_rx_ptype_msg+0x90/0x570 [idpf]
idpf_init_task+0x1ec/0x8d0 [idpf]
process_one_work+0x226/0x6d0
worker_thread+0x19e/0x340
kthread+0x10f/0x250
ret_from_fork+0x251/0x2b0
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leak in idpf_vc_core_deinit()
Make sure to free hw->lan_regs. Reported by kmemleak during reset:
unreferenced object 0xff1b913d02a936c0 (size 96):
comm "kworker/u258:14", pid 2174, jiffies 4294958305
hex dump (first 32 bytes):
00 00 00 c0 a8 ba 2d ff 00 00 00 00 00 00 00 00 ......-.........
00 00 40 08 00 00 00 00 00 00 25 b3 a8 ba 2d ff ..@.......%...-.
backtrace (crc 36063c4f):
__kmalloc_noprof+0x48f/0x890
idpf_vc_core_init+0x6ce/0x9b0 [idpf]
idpf_vc_event_task+0x1fb/0x350 [idpf]
process_one_work+0x226/0x6d0
worker_thread+0x19e/0x340
kthread+0x10f/0x250
ret_from_fork+0x251/0x2b0
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
net: 3com: 3c59x: fix possible null dereference in vortex_probe1()
pdev can be null and free_ring: can be called in 1297 with a null
pdev. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: mpsse: fix reference leak in gpio_mpsse_probe() error paths
The reference obtained by calling usb_get_dev() is not released in the
gpio_mpsse_probe() error paths. Fix that by using device managed helper
functions. Also remove the usb_put_dev() call in the disconnect function
since now it will be released automatically. |
| The Booking Calendar plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the wpbc_ajax_WPBC_FLEXTIMELINE_NAV() function in all versions up to, and including, 10.14.13. This makes it possible for unauthenticated attackers to retrieve booking information including customer names, phones and emails. |
| The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 3.4.4 via the 'add_reply' function due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with subscriber-level access and above, to steal file attachments uploaded by other users by specifying arbitrary attachment IDs in the 'description_attachments' parameter, re-associating those files to their own tickets and removing access from the original owners. |
| The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to SQL Injection via the Number-type custom field filter in all versions up to, and including, 3.4.4. This is due to insufficient escaping on the user-supplied operand value when using the equals operator and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Subscriber-level access and above (customers), to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: always detect conflicting inodes when logging inode refs
After rename exchanging (either with the rename exchange operation or
regular renames in multiple non-atomic steps) two inodes and at least
one of them is a directory, we can end up with a log tree that contains
only of the inodes and after a power failure that can result in an attempt
to delete the other inode when it should not because it was not deleted
before the power failure. In some case that delete attempt fails when
the target inode is a directory that contains a subvolume inside it, since
the log replay code is not prepared to deal with directory entries that
point to root items (only inode items).
1) We have directories "dir1" (inode A) and "dir2" (inode B) under the
same parent directory;
2) We have a file (inode C) under directory "dir1" (inode A);
3) We have a subvolume inside directory "dir2" (inode B);
4) All these inodes were persisted in a past transaction and we are
currently at transaction N;
5) We rename the file (inode C), so at btrfs_log_new_name() we update
inode C's last_unlink_trans to N;
6) We get a rename exchange for "dir1" (inode A) and "dir2" (inode B),
so after the exchange "dir1" is inode B and "dir2" is inode A.
During the rename exchange we call btrfs_log_new_name() for inodes
A and B, but because they are directories, we don't update their
last_unlink_trans to N;
7) An fsync against the file (inode C) is done, and because its inode
has a last_unlink_trans with a value of N we log its parent directory
(inode A) (through btrfs_log_all_parents(), called from
btrfs_log_inode_parent()).
8) So we end up with inode B not logged, which now has the old name
of inode A. At copy_inode_items_to_log(), when logging inode A, we
did not check if we had any conflicting inode to log because inode
A has a generation lower than the current transaction (created in
a past transaction);
9) After a power failure, when replaying the log tree, since we find that
inode A has a new name that conflicts with the name of inode B in the
fs tree, we attempt to delete inode B... this is wrong since that
directory was never deleted before the power failure, and because there
is a subvolume inside that directory, attempting to delete it will fail
since replay_dir_deletes() and btrfs_unlink_inode() are not prepared
to deal with dir items that point to roots instead of inodes.
When that happens the mount fails and we get a stack trace like the
following:
[87.2314] BTRFS info (device dm-0): start tree-log replay
[87.2318] BTRFS critical (device dm-0): failed to delete reference to subvol, root 5 inode 256 parent 259
[87.2332] ------------[ cut here ]------------
[87.2338] BTRFS: Transaction aborted (error -2)
[87.2346] WARNING: CPU: 1 PID: 638968 at fs/btrfs/inode.c:4345 __btrfs_unlink_inode+0x416/0x440 [btrfs]
[87.2368] Modules linked in: btrfs loop dm_thin_pool (...)
[87.2470] CPU: 1 UID: 0 PID: 638968 Comm: mount Tainted: G W 6.18.0-rc7-btrfs-next-218+ #2 PREEMPT(full)
[87.2489] Tainted: [W]=WARN
[87.2494] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
[87.2514] RIP: 0010:__btrfs_unlink_inode+0x416/0x440 [btrfs]
[87.2538] Code: c0 89 04 24 (...)
[87.2568] RSP: 0018:ffffc0e741f4b9b8 EFLAGS: 00010286
[87.2574] RAX: 0000000000000000 RBX: ffff9d3ec8a6cf60 RCX: 0000000000000000
[87.2582] RDX: 0000000000000002 RSI: ffffffff84ab45a1 RDI: 00000000ffffffff
[87.2591] RBP: ffff9d3ec8a6ef20 R08: 0000000000000000 R09: ffffc0e741f4b840
[87.2599] R10: ffff9d45dc1fffa8 R11: 0000000000000003 R12: ffff9d3ee26d77e0
[87.2608] R13: ffffc0e741f4ba98 R14: ffff9d4458040800 R15: ffff9d44b6b7ca10
[87.2618] FS: 00007f7b9603a840(0000) GS:ffff9d4658982000(0000) knlGS:0000000000000000
[87.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: make j1939_session_activate() fail if device is no longer registered
syzbot is still reporting
unregister_netdevice: waiting for vcan0 to become free. Usage count = 2
even after commit 93a27b5891b8 ("can: j1939: add missing calls in
NETDEV_UNREGISTER notification handler") was added. A debug printk() patch
found that j1939_session_activate() can succeed even after
j1939_cancel_active_session() from j1939_netdev_notify(NETDEV_UNREGISTER)
has completed.
Since j1939_cancel_active_session() is processed with the session list lock
held, checking ndev->reg_state in j1939_session_activate() with the session
list lock held can reliably close the race window. |
| In the Linux kernel, the following vulnerability has been resolved:
counter: interrupt-cnt: Drop IRQF_NO_THREAD flag
An IRQ handler can either be IRQF_NO_THREAD or acquire spinlock_t, as
CONFIG_PROVE_RAW_LOCK_NESTING warns:
=============================
[ BUG: Invalid wait context ]
6.18.0-rc1+git... #1
-----------------------------
some-user-space-process/1251 is trying to lock:
(&counter->events_list_lock){....}-{3:3}, at: counter_push_event [counter]
other info that might help us debug this:
context-{2:2}
no locks held by some-user-space-process/....
stack backtrace:
CPU: 0 UID: 0 PID: 1251 Comm: some-user-space-process 6.18.0-rc1+git... #1 PREEMPT
Call trace:
show_stack (C)
dump_stack_lvl
dump_stack
__lock_acquire
lock_acquire
_raw_spin_lock_irqsave
counter_push_event [counter]
interrupt_cnt_isr [interrupt_cnt]
__handle_irq_event_percpu
handle_irq_event
handle_simple_irq
handle_irq_desc
generic_handle_domain_irq
gpio_irq_handler
handle_irq_desc
generic_handle_domain_irq
gic_handle_irq
call_on_irq_stack
do_interrupt_handler
el0_interrupt
__el0_irq_handler_common
el0t_64_irq_handler
el0t_64_irq
... and Sebastian correctly points out. Remove IRQF_NO_THREAD as an
alternative to switching to raw_spinlock_t, because the latter would limit
all potential nested locks to raw_spinlock_t only. |
| The Ajax Load More – Infinite Scroll, Load More, & Lazy Load plugin for WordPress is vulnerable to unauthorized access of data due to incorrect authorization on the parse_custom_args() function in all versions up to, and including, 7.8.1. This makes it possible for unauthenticated attackers to expose the titles and excerpts of private, draft, pending, scheduled, and trashed posts. |