| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Fix potential memory leak in the performance extension
If fetching of userspace memory fails during the main loop, all drm sync
objs looked up until that point will be leaked because of the missing
drm_syncobj_put.
Fix it by exporting and using a common cleanup helper.
(cherry picked from commit 484de39fa5f5b7bd0c5f2e2c5265167250ef7501) |
| In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: Fix memory leak in audio daemon attach operation
Audio PD daemon send the name as part of the init IOCTL call. This
name needs to be copied to kernel for which memory is allocated.
This memory is never freed which might result in memory leak. Free
the memory when it is not needed. |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: amd-pstate: fix memory leak on CPU EPP exit
The cpudata memory from kzalloc() in amd_pstate_epp_cpu_init() is
not freed in the analogous exit function, so fix that.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/region: Fix memregion leaks in devm_cxl_add_region()
Move the mode verification to __create_region() before allocating the
memregion to avoid the memregion leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix missing sk_buff release in seg6_input_core
The seg6_input() function is responsible for adding the SRH into a
packet, delegating the operation to the seg6_input_core(). This function
uses the skb_cow_head() to ensure that there is sufficient headroom in
the sk_buff for accommodating the link-layer header.
In the event that the skb_cow_header() function fails, the
seg6_input_core() catches the error but it does not release the sk_buff,
which will result in a memory leak.
This issue was introduced in commit af3b5158b89d ("ipv6: sr: fix BUG due
to headroom too small after SRH push") and persists even after commit
7a3f5b0de364 ("netfilter: add netfilter hooks to SRv6 data plane"),
where the entire seg6_input() code was refactored to deal with netfilter
hooks.
The proposed patch addresses the identified memory leak by requiring the
seg6_input_core() function to release the sk_buff in the event that
skb_cow_head() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix memleak in seg6_hmac_init_algo
seg6_hmac_init_algo returns without cleaning up the previous allocations
if one fails, so it's going to leak all that memory and the crypto tfms.
Update seg6_hmac_exit to only free the memory when allocated, so we can
reuse the code directly. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: bcm: dvp: Assign ->num before accessing ->hws
Commit f316cdff8d67 ("clk: Annotate struct clk_hw_onecell_data with
__counted_by") annotated the hws member of 'struct clk_hw_onecell_data'
with __counted_by, which informs the bounds sanitizer about the number
of elements in hws, so that it can warn when hws is accessed out of
bounds. As noted in that change, the __counted_by member must be
initialized with the number of elements before the first array access
happens, otherwise there will be a warning from each access prior to the
initialization because the number of elements is zero. This occurs in
clk_dvp_probe() due to ->num being assigned after ->hws has been
accessed:
UBSAN: array-index-out-of-bounds in drivers/clk/bcm/clk-bcm2711-dvp.c:59:2
index 0 is out of range for type 'struct clk_hw *[] __counted_by(num)' (aka 'struct clk_hw *[]')
Move the ->num initialization to before the first access of ->hws, which
clears up the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: carl9170: re-fix fortified-memset warning
The carl9170_tx_release() function sometimes triggers a fortified-memset
warning in my randconfig builds:
In file included from include/linux/string.h:254,
from drivers/net/wireless/ath/carl9170/tx.c:40:
In function 'fortify_memset_chk',
inlined from 'carl9170_tx_release' at drivers/net/wireless/ath/carl9170/tx.c:283:2,
inlined from 'kref_put' at include/linux/kref.h:65:3,
inlined from 'carl9170_tx_put_skb' at drivers/net/wireless/ath/carl9170/tx.c:342:9:
include/linux/fortify-string.h:493:25: error: call to '__write_overflow_field' declared with attribute warning: detected write beyond size of field (1st parameter); maybe use struct_group()? [-Werror=attribute-warning]
493 | __write_overflow_field(p_size_field, size);
Kees previously tried to avoid this by using memset_after(), but it seems
this does not fully address the problem. I noticed that the memset_after()
here is done on a different part of the union (status) than the original
cast was from (rate_driver_data), which may confuse the compiler.
Unfortunately, the memset_after() trick does not work on driver_rates[]
because that is part of an anonymous struct, and I could not get
struct_group() to do this either. Using two separate memset() calls
on the two members does address the warning though. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers/perf: hisi: hns3: Actually use devm_add_action_or_reset()
pci_alloc_irq_vectors() allocates an irq vector. When devm_add_action()
fails, the irq vector is not freed, which leads to a memory leak.
Replace the devm_add_action with devm_add_action_or_reset to ensure
the irq vector can be destroyed when it fails. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Modify the print level of CQE error
Too much print may lead to a panic in kernel. Change ibdev_err() to
ibdev_err_ratelimited(), and change the printing level of cqe dump
to debug level. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: fix potential memory leakage when reading chip temperature
Without this commit, reading chip temperature will cause memory leakage. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Fix kmemleak in rdma_core observed during blktests nvme/rdma use siw
When running blktests nvme/rdma, the following kmemleak issue will appear.
kmemleak: Kernel memory leak detector initialized (mempool available:36041)
kmemleak: Automatic memory scanning thread started
kmemleak: 2 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 8 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 17 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
kmemleak: 4 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
unreferenced object 0xffff88855da53400 (size 192):
comm "rdma", pid 10630, jiffies 4296575922
hex dump (first 32 bytes):
37 00 00 00 00 00 00 00 c0 ff ff ff 1f 00 00 00 7...............
10 34 a5 5d 85 88 ff ff 10 34 a5 5d 85 88 ff ff .4.].....4.]....
backtrace (crc 47f66721):
[<ffffffff911251bd>] kmalloc_trace+0x30d/0x3b0
[<ffffffffc2640ff7>] alloc_gid_entry+0x47/0x380 [ib_core]
[<ffffffffc2642206>] add_modify_gid+0x166/0x930 [ib_core]
[<ffffffffc2643468>] ib_cache_update.part.0+0x6d8/0x910 [ib_core]
[<ffffffffc2644e1a>] ib_cache_setup_one+0x24a/0x350 [ib_core]
[<ffffffffc263949e>] ib_register_device+0x9e/0x3a0 [ib_core]
[<ffffffffc2a3d389>] 0xffffffffc2a3d389
[<ffffffffc2688cd8>] nldev_newlink+0x2b8/0x520 [ib_core]
[<ffffffffc2645fe3>] rdma_nl_rcv_msg+0x2c3/0x520 [ib_core]
[<ffffffffc264648c>]
rdma_nl_rcv_skb.constprop.0.isra.0+0x23c/0x3a0 [ib_core]
[<ffffffff9270e7b5>] netlink_unicast+0x445/0x710
[<ffffffff9270f1f1>] netlink_sendmsg+0x761/0xc40
[<ffffffff9249db29>] __sys_sendto+0x3a9/0x420
[<ffffffff9249dc8c>] __x64_sys_sendto+0xdc/0x1b0
[<ffffffff92db0ad3>] do_syscall_64+0x93/0x180
[<ffffffff92e00126>] entry_SYSCALL_64_after_hwframe+0x71/0x79
The root cause: rdma_put_gid_attr is not called when sgid_attr is set
to ERR_PTR(-ENODEV). |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda/cs_dsp_ctl: Use private_free for control cleanup
Use the control private_free callback to free the associated data
block. This ensures that the memory won't leak, whatever way the
control gets destroyed.
The original implementation didn't actually remove the ALSA
controls in hda_cs_dsp_control_remove(). It only freed the internal
tracking structure. This meant it was possible to remove/unload the
amp driver while leaving its ALSA controls still present in the
soundcard. Obviously attempting to access them could cause segfaults
or at least dereferencing stale pointers. |
| In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: fix list corruption from reorder of WRITE ->lqueued
__blkcg_rstat_flush() can be run anytime, especially when blk_cgroup_bio_start
is being executed.
If WRITE of `->lqueued` is re-ordered with READ of 'bisc->lnode.next' in
the loop of __blkcg_rstat_flush(), `next_bisc` can be assigned with one
stat instance being added in blk_cgroup_bio_start(), then the local
list in __blkcg_rstat_flush() could be corrupted.
Fix the issue by adding one barrier. |
| In the Linux kernel, the following vulnerability has been resolved:
KEYS: trusted: Fix memory leak in tpm2_key_encode()
'scratch' is never freed. Fix this by calling kfree() in the success, and
in the error case. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: hda: intel-sdw-acpi: fix usage of device_get_named_child_node()
The documentation for device_get_named_child_node() mentions this
important point:
"
The caller is responsible for calling fwnode_handle_put() on the
returned fwnode pointer.
"
Add fwnode_handle_put() to avoid a leaked reference. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix missing memory barrier in tls_init
In tls_init(), a write memory barrier is missing, and store-store
reordering may cause NULL dereference in tls_{setsockopt,getsockopt}.
CPU0 CPU1
----- -----
// In tls_init()
// In tls_ctx_create()
ctx = kzalloc()
ctx->sk_proto = READ_ONCE(sk->sk_prot) -(1)
// In update_sk_prot()
WRITE_ONCE(sk->sk_prot, tls_prots) -(2)
// In sock_common_setsockopt()
READ_ONCE(sk->sk_prot)->setsockopt()
// In tls_{setsockopt,getsockopt}()
ctx->sk_proto->setsockopt() -(3)
In the above scenario, when (1) and (2) are reordered, (3) can observe
the NULL value of ctx->sk_proto, causing NULL dereference.
To fix it, we rely on rcu_assign_pointer() which implies the release
barrier semantic. By moving rcu_assign_pointer() after ctx->sk_proto is
initialized, we can ensure that ctx->sk_proto are visible when
changing sk->sk_prot. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix memory leak in hci_req_sync_complete()
In 'hci_req_sync_complete()', always free the previous sync
request state before assigning reference to a new one. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: Fix transmit scheduler resource leak
Inorder to support shaping and scheduling, Upon class creation
Netdev driver allocates trasmit schedulers.
The previous patch which added support for Round robin scheduling has
a bug due to which driver is not freeing transmit schedulers post
class deletion.
This patch fixes the same. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix possible memory leak in bnxt_rdma_aux_device_init()
If ulp = kzalloc() fails, the allocated edev will leak because it is
not properly assigned and the cleanup path will not be able to free it.
Fix it by assigning it properly immediately after allocation. |