Search Results (40732 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-63456 1 Tenda 2 Ax1803, Ax1803 Firmware 2025-11-18 6.5 Medium
Tenda AX-1803 v1.0.0.1 was discovered to contain a stack overflow via the time parameter in the SetSysTimeCfg function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-63147 1 Tenda 2 Ax3, Ax3 Firmware 2025-11-18 6.5 Medium
Tenda AX3 V16.03.12.10_CN was discovered to contain a stack overflow in the deviceId parameter of the saveParentControlInfo function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2018-5002 6 Adobe, Apple, Google and 3 more 12 Flash Player, Flash Player Desktop Runtime, Mac Os X and 9 more 2025-11-18 7.8 High
Adobe Flash Player versions 29.0.0.171 and earlier have a Stack-based buffer overflow vulnerability. Successful exploitation could lead to arbitrary code execution in the context of the current user.
CVE-2025-38224 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: can: kvaser_pciefd: refine error prone echo_skb_max handling logic echo_skb_max should define the supported upper limit of echo_skb[] allocated inside the netdevice's priv. The corresponding size value provided by this driver to alloc_candev() is KVASER_PCIEFD_CAN_TX_MAX_COUNT which is 17. But later echo_skb_max is rounded up to the nearest power of two (for the max case, that would be 32) and the tx/ack indices calculated further during tx/rx may exceed the upper array boundary. Kasan reported this for the ack case inside kvaser_pciefd_handle_ack_packet(), though the xmit function has actually caught the same thing earlier. BUG: KASAN: slab-out-of-bounds in kvaser_pciefd_handle_ack_packet+0x2d7/0x92a drivers/net/can/kvaser_pciefd.c:1528 Read of size 8 at addr ffff888105e4f078 by task swapper/4/0 CPU: 4 UID: 0 PID: 0 Comm: swapper/4 Not tainted 6.15.0 #12 PREEMPT(voluntary) Call Trace: <IRQ> dump_stack_lvl lib/dump_stack.c:122 print_report mm/kasan/report.c:521 kasan_report mm/kasan/report.c:634 kvaser_pciefd_handle_ack_packet drivers/net/can/kvaser_pciefd.c:1528 kvaser_pciefd_read_packet drivers/net/can/kvaser_pciefd.c:1605 kvaser_pciefd_read_buffer drivers/net/can/kvaser_pciefd.c:1656 kvaser_pciefd_receive_irq drivers/net/can/kvaser_pciefd.c:1684 kvaser_pciefd_irq_handler drivers/net/can/kvaser_pciefd.c:1733 __handle_irq_event_percpu kernel/irq/handle.c:158 handle_irq_event kernel/irq/handle.c:210 handle_edge_irq kernel/irq/chip.c:833 __common_interrupt arch/x86/kernel/irq.c:296 common_interrupt arch/x86/kernel/irq.c:286 </IRQ> Tx max count definitely matters for kvaser_pciefd_tx_avail(), but for seq numbers' generation that's not the case - we're free to calculate them as would be more convenient, not taking tx max count into account. The only downside is that the size of echo_skb[] should correspond to the max seq number (not tx max count), so in some situations a bit more memory would be consumed than could be. Thus make the size of the underlying echo_skb[] sufficient for the rounded max tx value. Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2024-36912 1 Linux 1 Linux Kernel 2025-11-18 8.1 High
In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: vmbus: Track decrypted status in vmbus_gpadl In CoCo VMs it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. In order to make sure callers of vmbus_establish_gpadl() and vmbus_teardown_gpadl() don't return decrypted/shared pages to allocators, add a field in struct vmbus_gpadl to keep track of the decryption status of the buffers. This will allow the callers to know if they should free or leak the pages.
CVE-2025-55118 1 Bmc 1 Control-m/agent 2025-11-18 8.9 High
Memory corruptions can be remotely triggered in the Control-M/Agent when SSL/TLS communication is configured. The issue occurs in the following cases: * Control-M/Agent 9.0.20: SSL/TLS configuration is set to the non-default setting "use_openssl=n"; * Control-M/Agent 9.0.21 and 9.0.22: Agent router configuration uses the non-default settings "JAVA_AR=N" and "use_openssl=n"
CVE-2025-38221 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ext4: fix out of bounds punch offset Punching a hole with a start offset that exceeds max_end is not permitted and will result in a negative length in the truncate_inode_partial_folio() function while truncating the page cache, potentially leading to undesirable consequences. A simple reproducer: truncate -s 9895604649994 /mnt/foo xfs_io -c "pwrite 8796093022208 4096" /mnt/foo xfs_io -c "fpunch 8796093022213 25769803777" /mnt/foo kernel BUG at include/linux/highmem.h:275! Oops: invalid opcode: 0000 [#1] SMP PTI CPU: 3 UID: 0 PID: 710 Comm: xfs_io Not tainted 6.15.0-rc3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-2.fc40 04/01/2014 RIP: 0010:zero_user_segments.constprop.0+0xd7/0x110 RSP: 0018:ffffc90001cf3b38 EFLAGS: 00010287 RAX: 0000000000000005 RBX: ffffea0001485e40 RCX: 0000000000001000 RDX: 000000000040b000 RSI: 0000000000000005 RDI: 000000000040b000 RBP: 000000000040affb R08: ffff888000000000 R09: ffffea0000000000 R10: 0000000000000003 R11: 00000000fffc7fc5 R12: 0000000000000005 R13: 000000000040affb R14: ffffea0001485e40 R15: ffff888031cd3000 FS: 00007f4f63d0b780(0000) GS:ffff8880d337d000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000001ae0b038 CR3: 00000000536aa000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> truncate_inode_partial_folio+0x3dd/0x620 truncate_inode_pages_range+0x226/0x720 ? bdev_getblk+0x52/0x3e0 ? ext4_get_group_desc+0x78/0x150 ? crc32c_arch+0xfd/0x180 ? __ext4_get_inode_loc+0x18c/0x840 ? ext4_inode_csum+0x117/0x160 ? jbd2_journal_dirty_metadata+0x61/0x390 ? __ext4_handle_dirty_metadata+0xa0/0x2b0 ? kmem_cache_free+0x90/0x5a0 ? jbd2_journal_stop+0x1d5/0x550 ? __ext4_journal_stop+0x49/0x100 truncate_pagecache_range+0x50/0x80 ext4_truncate_page_cache_block_range+0x57/0x3a0 ext4_punch_hole+0x1fe/0x670 ext4_fallocate+0x792/0x17d0 ? __count_memcg_events+0x175/0x2a0 vfs_fallocate+0x121/0x560 ksys_fallocate+0x51/0xc0 __x64_sys_fallocate+0x24/0x40 x64_sys_call+0x18d2/0x4170 do_syscall_64+0xa7/0x220 entry_SYSCALL_64_after_hwframe+0x76/0x7e Fix this by filtering out cases where the punching start offset exceeds max_end.
CVE-2021-4469 1 Denver 2 I, Sho-110 2025-11-18 N/A
Denver SHO-110 IP cameras expose a secondary HTTP service on TCP port 8001 that provides access to a '/snapshot' endpoint without authentication. While the primary web interface on port 80 enforces authentication, the backdoor service allows any remote attacker to retrieve image snapshots by directly requesting the 'snapshot' endpoint. An attacker can repeatedly collect snapshots and reconstruct the camera stream, compromising the confidentiality of the monitored environment.
CVE-2025-40936 1 Siemens 1 Ps Iges Parasolid Translator Component 2025-11-18 7.8 High
A vulnerability has been identified in PS/IGES Parasolid Translator Component (All versions < V29.0.258). The affected applications contains an out of bounds read vulnerability while parsing specially crafted IGS files. This could allow an attacker to crash the application or execute code in the context of the current process. (ZDI-CAN-26755)
CVE-2019-8720 3 Redhat, Webkitgtk, Wpewebkit 23 Codeready Linux Builder, Codeready Linux Builder Eus, Codeready Linux Builder For Arm64 Eus and 20 more 2025-11-18 8.8 High
A vulnerability was found in WebKit. The flaw is triggered when processing maliciously crafted web content that may lead to arbitrary code execution. Improved memory handling addresses the multiple memory corruption issues.
CVE-2025-38329 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Fix OOB memory read access in KUnit test (wmfw info) KASAN reported out of bounds access - cs_dsp_mock_wmfw_add_info(), because the source string length was rounded up to the allocation size.
CVE-2025-38330 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Fix OOB memory read access in KUnit test (ctl cache) KASAN reported out of bounds access - cs_dsp_ctl_cache_init_multiple_offsets(). The code uses mock_coeff_template.length_bytes (4 bytes) for register value allocations. But later, this length is set to 8 bytes which causes test code failures. As fix, just remove the lenght override, keeping the original value 4 for all operations.
CVE-2025-38340 1 Linux 1 Linux Kernel 2025-11-18 7.1 High
In the Linux kernel, the following vulnerability has been resolved: firmware: cs_dsp: Fix OOB memory read access in KUnit test KASAN reported out of bounds access - cs_dsp_mock_bin_add_name_or_info(), because the source string length was rounded up to the allocation size.
CVE-2025-4948 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-18 7.5 High
A flaw was found in the soup_multipart_new_from_message() function of the libsoup HTTP library, which is commonly used by GNOME and other applications to handle web communications. The issue occurs when the library processes specially crafted multipart messages. Due to improper validation, an internal calculation can go wrong, leading to an integer underflow. This can cause the program to access invalid memory and crash. As a result, any application or server using libsoup could be forced to exit unexpectedly, creating a denial-of-service (DoS) risk.
CVE-2025-32914 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-18 7.4 High
A flaw was found in libsoup, where the soup_multipart_new_from_message() function is vulnerable to an out-of-bounds read. This flaw allows a malicious HTTP client to induce the libsoup server to read out of bounds.
CVE-2025-32906 1 Redhat 6 Enterprise Linux, Rhel Aus, Rhel E4s and 3 more 2025-11-18 7.5 High
A flaw was found in libsoup, where the soup_headers_parse_request() function may be vulnerable to an out-of-bound read. This flaw allows a malicious user to use a specially crafted HTTP request to crash the HTTP server.
CVE-2025-2784 2 Gnome, Redhat 26 Libsoup, Codeready Linux Builder, Codeready Linux Builder For Arm64 and 23 more 2025-11-18 7 High
A flaw was found in libsoup. The package is vulnerable to a heap buffer over-read when sniffing content via the skip_insight_whitespace() function. Libsoup clients may read one byte out-of-bounds in response to a crafted HTTP response by an HTTP server.
CVE-2025-32908 1 Redhat 1 Enterprise Linux 2025-11-18 7.5 High
A flaw was found in libsoup. The HTTP/2 server in libsoup may not fully validate the values of pseudo-headers :scheme, :authority, and :path, which may allow a user to cause a denial of service (DoS).
CVE-2025-4035 1 Redhat 1 Enterprise Linux 2025-11-18 4.3 Medium
A flaw was found in libsoup. When handling cookies, libsoup clients mistakenly allow cookies to be set for public suffix domains if the domain contains at least two components and includes an uppercase character. This bypasses public suffix protections and could allow a malicious website to set cookies for domains it does not own, potentially leading to integrity issues such as session fixation.
CVE-2025-32907 1 Redhat 3 Enterprise Linux, Rhel E4s, Rhel Eus 2025-11-18 5.3 Medium
A flaw was found in libsoup. The implementation of HTTP range requests is vulnerable to a resource consumption attack. This flaw allows a malicious client to request the same range many times in a single HTTP request, causing the server to use large amounts of memory. This does not allow for a full denial of service.