Search Results (16668 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50723 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: fix memory leak in bnxt_nvm_test() Free the kzalloc'ed buffer before returning in the success path.
CVE-2022-50722 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: ipu3-imgu: Fix NULL pointer dereference in active selection access What the IMGU driver did was that it first acquired the pointers to active and try V4L2 subdev state, and only then figured out which one to use. The problem with that approach and a later patch (see Fixes: tag) is that as sd_state argument to v4l2_subdev_get_try_crop() et al is NULL, there is now an attempt to dereference that. Fix this. Also rewrap lines a little.
CVE-2023-54074 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Use correct encap attribute during invalidation With introduction of post action infrastructure most of the users of encap attribute had been modified in order to obtain the correct attribute by calling mlx5e_tc_get_encap_attr() helper instead of assuming encap action is always on default attribute. However, the cited commit didn't modify mlx5e_invalidate_encap() which prevents it from destroying correct modify header action which leads to a warning [0]. Fix the issue by using correct attribute. [0]: Feb 21 09:47:35 c-237-177-40-045 kernel: WARNING: CPU: 17 PID: 654 at drivers/net/ethernet/mellanox/mlx5/core/en_tc.c:684 mlx5e_tc_attach_mod_hdr+0x1cc/0x230 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: RIP: 0010:mlx5e_tc_attach_mod_hdr+0x1cc/0x230 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: Call Trace: Feb 21 09:47:35 c-237-177-40-045 kernel: <TASK> Feb 21 09:47:35 c-237-177-40-045 kernel: mlx5e_tc_fib_event_work+0x8e3/0x1f60 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: ? mlx5e_take_all_encap_flows+0xe0/0xe0 [mlx5_core] Feb 21 09:47:35 c-237-177-40-045 kernel: ? lock_downgrade+0x6d0/0x6d0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x273/0x3f0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x273/0x3f0 Feb 21 09:47:35 c-237-177-40-045 kernel: process_one_work+0x7c2/0x1310 Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x3f0/0x3f0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? pwq_dec_nr_in_flight+0x230/0x230 Feb 21 09:47:35 c-237-177-40-045 kernel: ? rwlock_bug.part.0+0x90/0x90 Feb 21 09:47:35 c-237-177-40-045 kernel: worker_thread+0x59d/0xec0 Feb 21 09:47:35 c-237-177-40-045 kernel: ? __kthread_parkme+0xd9/0x1d0
CVE-2023-54121 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix incorrect splitting in btrfs_drop_extent_map_range In production we were seeing a variety of WARN_ON()'s in the extent_map code, specifically in btrfs_drop_extent_map_range() when we have to call add_extent_mapping() for our second split. Consider the following extent map layout PINNED [0 16K) [32K, 48K) and then we call btrfs_drop_extent_map_range for [0, 36K), with skip_pinned == true. The initial loop will have start = 0 end = 36K len = 36K we will find the [0, 16k) extent, but since we are pinned we will skip it, which has this code start = em_end; if (end != (u64)-1) len = start + len - em_end; em_end here is 16K, so now the values are start = 16K len = 16K + 36K - 16K = 36K len should instead be 20K. This is a problem when we find the next extent at [32K, 48K), we need to split this extent to leave [36K, 48k), however the code for the split looks like this split->start = start + len; split->len = em_end - (start + len); In this case we have em_end = 48K split->start = 16K + 36K // this should be 16K + 20K split->len = 48K - (16K + 36K) // this overflows as 16K + 36K is 52K and now we have an invalid extent_map in the tree that potentially overlaps other entries in the extent map. Even in the non-overlapping case we will have split->start set improperly, which will cause problems with any block related calculations. We don't actually need len in this loop, we can simply use end as our end point, and only adjust start up when we find a pinned extent we need to skip. Adjust the logic to do this, which keeps us from inserting an invalid extent map. We only skip_pinned in the relocation case, so this is relatively rare, except in the case where you are running relocation a lot, which can happen with auto relocation on.
CVE-2022-50725 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: vidtv: Fix use-after-free in vidtv_bridge_dvb_init() KASAN reports a use-after-free: BUG: KASAN: use-after-free in dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core] Call Trace: ... dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core] vidtv_bridge_probe+0x7bf/0xa40 [dvb_vidtv_bridge] platform_probe+0xb6/0x170 ... Allocated by task 1238: ... dvb_register_device+0x1a7/0xa70 [dvb_core] dvb_dmxdev_init+0x2af/0x4a0 [dvb_core] vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge] ... Freed by task 1238: dvb_register_device+0x6d2/0xa70 [dvb_core] dvb_dmxdev_init+0x2af/0x4a0 [dvb_core] vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge] ... It is because the error handling in vidtv_bridge_dvb_init() is wrong. First, vidtv_bridge_dmx(dev)_init() will clean themselves when fail, but goto fail_dmx(_dev): calls release functions again, which causes use-after-free. Also, in fail_fe, fail_tuner_probe and fail_demod_probe, j = i will cause out-of-bound when i finished its loop (i == NUM_FE). And the loop releasing is wrong, although now NUM_FE is 1 so it won't cause problem. Fix this by correctly releasing everything.
CVE-2022-50724 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix resource leak in regulator_register() I got some resource leak reports while doing fault injection test: OF: ERROR: memory leak, expected refcount 1 instead of 100, of_node_get()/of_node_put() unbalanced - destroy cset entry: attach overlay node /i2c/pmic@64/regulators/buck1 unreferenced object 0xffff88810deea000 (size 512): comm "490-i2c-rt5190a", pid 253, jiffies 4294859840 (age 5061.046s) hex dump (first 32 bytes): 00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N.......... ff ff ff ff ff ff ff ff a0 1e 00 a1 ff ff ff ff ................ backtrace: [<00000000d78541e2>] kmalloc_trace+0x21/0x110 [<00000000b343d153>] device_private_init+0x32/0xd0 [<00000000be1f0c70>] device_add+0xb2d/0x1030 [<00000000e3e6344d>] regulator_register+0xaf2/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] unreferenced object 0xffff88810b617b80 (size 32): comm "490-i2c-rt5190a", pid 253, jiffies 4294859904 (age 5060.983s) hex dump (first 32 bytes): 72 65 67 75 6c 61 74 6f 72 2e 32 38 36 38 2d 53 regulator.2868-S 55 50 50 4c 59 00 ff ff 29 00 00 00 2b 00 00 00 UPPLY...)...+... backtrace: [<000000009da9280d>] __kmalloc_node_track_caller+0x44/0x1b0 [<0000000025c6a4e5>] kstrdup+0x3a/0x70 [<00000000790efb69>] create_regulator+0xc0/0x4e0 [<0000000005ed203a>] regulator_resolve_supply+0x2d4/0x440 [<0000000045796214>] regulator_register+0x10b3/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] After calling regulator_resolve_supply(), the 'rdev->supply' is set by set_supply(), after this set, in the error path, the resources need be released, so call regulator_put() to avoid the leaks.
CVE-2023-54104 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: mtd: rawnand: fsl_upm: Fix an off-by one test in fun_exec_op() 'op-cs' is copied in 'fun->mchip_number' which is used to access the 'mchip_offsets' and the 'rnb_gpio' arrays. These arrays have NAND_MAX_CHIPS elements, so the index must be below this limit. Fix the sanity check in order to avoid the NAND_MAX_CHIPS value. This would lead to out-of-bound accesses.
CVE-2022-50721 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dmaengine: qcom-adm: fix wrong calling convention for prep_slave_sg The calling convention for pre_slave_sg is to return NULL on error and provide an error log to the system. Qcom-adm instead provide error pointer when an error occur. This indirectly cause kernel panic for example for the nandc driver that checks only if the pointer returned by device_prep_slave_sg is not NULL. Returning an error pointer makes nandc think the device_prep_slave_sg function correctly completed and makes the kernel panics later in the code. While nandc is the one that makes the kernel crash, it was pointed out that the real problem is qcom-adm not following calling convention for that function. To fix this, drop returning error pointer and return NULL with an error log.
CVE-2023-54073 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tpm: Add !tpm_amd_is_rng_defective() to the hwrng_unregister() call site The following crash was reported: [ 1950.279393] list_del corruption, ffff99560d485790->next is NULL [ 1950.279400] ------------[ cut here ]------------ [ 1950.279401] kernel BUG at lib/list_debug.c:49! [ 1950.279405] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 1950.279407] CPU: 11 PID: 5886 Comm: modprobe Tainted: G O 6.2.8_1 #1 [ 1950.279409] Hardware name: Gigabyte Technology Co., Ltd. B550M AORUS PRO-P/B550M AORUS PRO-P, BIOS F15c 05/11/2022 [ 1950.279410] RIP: 0010:__list_del_entry_valid+0x59/0xc0 [ 1950.279415] Code: 48 8b 01 48 39 f8 75 5a 48 8b 72 08 48 39 c6 75 65 b8 01 00 00 00 c3 cc cc cc cc 48 89 fe 48 c7 c7 08 a8 13 9e e8 b7 0a bc ff <0f> 0b 48 89 fe 48 c7 c7 38 a8 13 9e e8 a6 0a bc ff 0f 0b 48 89 fe [ 1950.279416] RSP: 0018:ffffa96d05647e08 EFLAGS: 00010246 [ 1950.279418] RAX: 0000000000000033 RBX: ffff99560d485750 RCX: 0000000000000000 [ 1950.279419] RDX: 0000000000000000 RSI: ffffffff9e107c59 RDI: 00000000ffffffff [ 1950.279420] RBP: ffffffffc19c5168 R08: 0000000000000000 R09: ffffa96d05647cc8 [ 1950.279421] R10: 0000000000000003 R11: ffffffff9ea2a568 R12: 0000000000000000 [ 1950.279422] R13: ffff99560140a2e0 R14: ffff99560127d2e0 R15: 0000000000000000 [ 1950.279422] FS: 00007f67da795380(0000) GS:ffff995d1f0c0000(0000) knlGS:0000000000000000 [ 1950.279424] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1950.279424] CR2: 00007f67da7e65c0 CR3: 00000001feed2000 CR4: 0000000000750ee0 [ 1950.279426] PKRU: 55555554 [ 1950.279426] Call Trace: [ 1950.279428] <TASK> [ 1950.279430] hwrng_unregister+0x28/0xe0 [rng_core] [ 1950.279436] tpm_chip_unregister+0xd5/0xf0 [tpm] Add the forgotten !tpm_amd_is_rng_defective() invariant to the hwrng_unregister() call site inside tpm_chip_unregister().
CVE-2022-50714 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921e: fix rmmod crash in driver reload test In insmod/rmmod stress test, the following crash dump shows up immediately. The problem is caused by missing mt76_dev in mt7921_pci_remove(). We should make sure the drvdata is ready before probe() finished. [168.862789] ================================================================== [168.862797] BUG: KASAN: user-memory-access in try_to_grab_pending+0x59/0x480 [168.862805] Write of size 8 at addr 0000000000006df0 by task rmmod/5361 [168.862812] CPU: 7 PID: 5361 Comm: rmmod Tainted: G OE 5.19.0-rc6 #1 [168.862816] Hardware name: Intel(R) Client Systems NUC8i7BEH/NUC8BEB, 05/04/2020 [168.862820] Call Trace: [168.862822] <TASK> [168.862825] dump_stack_lvl+0x49/0x63 [168.862832] print_report.cold+0x493/0x6b7 [168.862845] kasan_report+0xa7/0x120 [168.862857] kasan_check_range+0x163/0x200 [168.862861] __kasan_check_write+0x14/0x20 [168.862866] try_to_grab_pending+0x59/0x480 [168.862870] __cancel_work_timer+0xbb/0x340 [168.862898] cancel_work_sync+0x10/0x20 [168.862902] mt7921_pci_remove+0x61/0x1c0 [mt7921e] [168.862909] pci_device_remove+0xa3/0x1d0 [168.862914] device_remove+0xc4/0x170 [168.862920] device_release_driver_internal+0x163/0x300 [168.862925] driver_detach+0xc7/0x1a0 [168.862930] bus_remove_driver+0xeb/0x2d0 [168.862935] driver_unregister+0x71/0xb0 [168.862939] pci_unregister_driver+0x30/0x230 [168.862944] mt7921_pci_driver_exit+0x10/0x1b [mt7921e] [168.862949] __x64_sys_delete_module+0x2f9/0x4b0 [168.862968] do_syscall_64+0x38/0x90 [168.862973] entry_SYSCALL_64_after_hwframe+0x63/0xcd Test steps: 1. insmode 2. do not ifup 3. rmmod quickly (within 1 second)
CVE-2023-54108 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix DMA-API call trace on NVMe LS requests The following message and call trace was seen with debug kernels: DMA-API: qla2xxx 0000:41:00.0: device driver failed to check map error [device address=0x00000002a3ff38d8] [size=1024 bytes] [mapped as single] WARNING: CPU: 0 PID: 2930 at kernel/dma/debug.c:1017 check_unmap+0xf42/0x1990 Call Trace: debug_dma_unmap_page+0xc9/0x100 qla_nvme_ls_unmap+0x141/0x210 [qla2xxx] Remove DMA mapping from the driver altogether, as it is already done by FC layer. This prevents the warning.
CVE-2025-68734 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: isdn: mISDN: hfcsusb: fix memory leak in hfcsusb_probe() In hfcsusb_probe(), the memory allocated for ctrl_urb gets leaked when setup_instance() fails with an error code. Fix that by freeing the urb before freeing the hw structure. Also change the error paths to use the goto ladder style. Compile tested only. Issue found using a prototype static analysis tool.
CVE-2022-50712 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: devlink: hold region lock when flushing snapshots Netdevsim triggers a splat on reload, when it destroys regions with snapshots pending: WARNING: CPU: 1 PID: 787 at net/core/devlink.c:6291 devlink_region_snapshot_del+0x12e/0x140 CPU: 1 PID: 787 Comm: devlink Not tainted 6.1.0-07460-g7ae9888d6e1c #580 RIP: 0010:devlink_region_snapshot_del+0x12e/0x140 Call Trace: <TASK> devl_region_destroy+0x70/0x140 nsim_dev_reload_down+0x2f/0x60 [netdevsim] devlink_reload+0x1f7/0x360 devlink_nl_cmd_reload+0x6ce/0x860 genl_family_rcv_msg_doit.isra.0+0x145/0x1c0 This is the locking assert in devlink_region_snapshot_del(), we're supposed to be holding the region->snapshot_lock here.
CVE-2022-50743 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: erofs: Fix pcluster memleak when its block address is zero syzkaller reported a memleak: https://syzkaller.appspot.com/bug?id=62f37ff612f0021641eda5b17f056f1668aa9aed unreferenced object 0xffff88811009c7f8 (size 136): ... backtrace: [<ffffffff821db19b>] z_erofs_do_read_page+0x99b/0x1740 [<ffffffff821dee9e>] z_erofs_readahead+0x24e/0x580 [<ffffffff814bc0d6>] read_pages+0x86/0x3d0 ... syzkaller constructed a case: in z_erofs_register_pcluster(), ztailpacking = false and map->m_pa = zero. This makes pcl->obj.index be zero although pcl is not a inline pcluster. Then following path adds refcount for grp, but the refcount won't be put because pcl is inline. z_erofs_readahead() z_erofs_do_read_page() # for another page z_erofs_collector_begin() erofs_find_workgroup() erofs_workgroup_get() Since it's illegal for the block address of a non-inlined pcluster to be zero, add check here to avoid registering the pcluster which would be leaked.
CVE-2022-50727 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: efct: Fix possible memleak in efct_device_init() In efct_device_init(), when efct_scsi_reg_fc_transport() fails, efct_scsi_tgt_driver_exit() is not called to release memory for efct_scsi_tgt_driver_init() and causes memleak: unreferenced object 0xffff8881020ce000 (size 2048): comm "modprobe", pid 465, jiffies 4294928222 (age 55.872s) backtrace: [<0000000021a1ef1b>] kmalloc_trace+0x27/0x110 [<000000004c3ed51c>] target_register_template+0x4fd/0x7b0 [target_core_mod] [<00000000f3393296>] efct_scsi_tgt_driver_init+0x18/0x50 [efct] [<00000000115de533>] 0xffffffffc0d90011 [<00000000d608f646>] do_one_initcall+0xd0/0x4e0 [<0000000067828cf1>] do_init_module+0x1cc/0x6a0 ...
CVE-2022-50726 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix possible use-after-free in async command interface mlx5_cmd_cleanup_async_ctx should return only after all its callback handlers were completed. Before this patch, the below race between mlx5_cmd_cleanup_async_ctx and mlx5_cmd_exec_cb_handler was possible and lead to a use-after-free: 1. mlx5_cmd_cleanup_async_ctx is called while num_inflight is 2 (i.e. elevated by 1, a single inflight callback). 2. mlx5_cmd_cleanup_async_ctx decreases num_inflight to 1. 3. mlx5_cmd_exec_cb_handler is called, decreases num_inflight to 0 and is about to call wake_up(). 4. mlx5_cmd_cleanup_async_ctx calls wait_event, which returns immediately as the condition (num_inflight == 0) holds. 5. mlx5_cmd_cleanup_async_ctx returns. 6. The caller of mlx5_cmd_cleanup_async_ctx frees the mlx5_async_ctx object. 7. mlx5_cmd_exec_cb_handler goes on and calls wake_up() on the freed object. Fix it by syncing using a completion object. Mark it completed when num_inflight reaches 0. Trace: BUG: KASAN: use-after-free in do_raw_spin_lock+0x23d/0x270 Read of size 4 at addr ffff888139cd12f4 by task swapper/5/0 CPU: 5 PID: 0 Comm: swapper/5 Not tainted 6.0.0-rc3_for_upstream_debug_2022_08_30_13_10 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0x57/0x7d print_report.cold+0x2d5/0x684 ? do_raw_spin_lock+0x23d/0x270 kasan_report+0xb1/0x1a0 ? do_raw_spin_lock+0x23d/0x270 do_raw_spin_lock+0x23d/0x270 ? rwlock_bug.part.0+0x90/0x90 ? __delete_object+0xb8/0x100 ? lock_downgrade+0x6e0/0x6e0 _raw_spin_lock_irqsave+0x43/0x60 ? __wake_up_common_lock+0xb9/0x140 __wake_up_common_lock+0xb9/0x140 ? __wake_up_common+0x650/0x650 ? destroy_tis_callback+0x53/0x70 [mlx5_core] ? kasan_set_track+0x21/0x30 ? destroy_tis_callback+0x53/0x70 [mlx5_core] ? kfree+0x1ba/0x520 ? do_raw_spin_unlock+0x54/0x220 mlx5_cmd_exec_cb_handler+0x136/0x1a0 [mlx5_core] ? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core] ? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core] mlx5_cmd_comp_handler+0x65a/0x12b0 [mlx5_core] ? dump_command+0xcc0/0xcc0 [mlx5_core] ? lockdep_hardirqs_on_prepare+0x400/0x400 ? cmd_comp_notifier+0x7e/0xb0 [mlx5_core] cmd_comp_notifier+0x7e/0xb0 [mlx5_core] atomic_notifier_call_chain+0xd7/0x1d0 mlx5_eq_async_int+0x3ce/0xa20 [mlx5_core] atomic_notifier_call_chain+0xd7/0x1d0 ? irq_release+0x140/0x140 [mlx5_core] irq_int_handler+0x19/0x30 [mlx5_core] __handle_irq_event_percpu+0x1f2/0x620 handle_irq_event+0xb2/0x1d0 handle_edge_irq+0x21e/0xb00 __common_interrupt+0x79/0x1a0 common_interrupt+0x78/0xa0 </IRQ> <TASK> asm_common_interrupt+0x22/0x40 RIP: 0010:default_idle+0x42/0x60 Code: c1 83 e0 07 48 c1 e9 03 83 c0 03 0f b6 14 11 38 d0 7c 04 84 d2 75 14 8b 05 eb 47 22 02 85 c0 7e 07 0f 00 2d e0 9f 48 00 fb f4 <c3> 48 c7 c7 80 08 7f 85 e8 d1 d3 3e fe eb de 66 66 2e 0f 1f 84 00 RSP: 0018:ffff888100dbfdf0 EFLAGS: 00000242 RAX: 0000000000000001 RBX: ffffffff84ecbd48 RCX: 1ffffffff0afe110 RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffff835cc9bc RBP: 0000000000000005 R08: 0000000000000001 R09: ffff88881dec4ac3 R10: ffffed1103bd8958 R11: 0000017d0ca571c9 R12: 0000000000000005 R13: ffffffff84f024e0 R14: 0000000000000000 R15: dffffc0000000000 ? default_idle_call+0xcc/0x450 default_idle_call+0xec/0x450 do_idle+0x394/0x450 ? arch_cpu_idle_exit+0x40/0x40 ? do_idle+0x17/0x450 cpu_startup_entry+0x19/0x20 start_secondary+0x221/0x2b0 ? set_cpu_sibling_map+0x2070/0x2070 secondary_startup_64_no_verify+0xcd/0xdb </TASK> Allocated by task 49502: kasan_save_stack+0x1e/0x40 __kasan_kmalloc+0x81/0xa0 kvmalloc_node+0x48/0xe0 mlx5e_bulk_async_init+0x35/0x110 [mlx5_core] mlx5e_tls_priv_tx_list_cleanup+0x84/0x3e0 [mlx5_core] mlx5e_ktls_cleanup_tx+0x38f/0x760 [mlx5_core] mlx5e_cleanup_nic_tx+0xa7/0x100 [mlx5_core] mlx5e_detach_netdev+0x1c ---truncated---
CVE-2022-50713 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: clk: visconti: Fix memory leak in visconti_register_pll() @pll->rate_table has allocated memory by kmemdup(), if clk_hw_register() fails, it should be freed, otherwise it will cause memory leak issue, this patch fixes it.
CVE-2022-50718 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix pci device refcount leak As comment of pci_get_domain_bus_and_slot() says, it returns a pci device with refcount increment, when finish using it, the caller must decrement the reference count by calling pci_dev_put(). So before returning from amdgpu_device_resume|suspend_display_audio(), pci_dev_put() is called to avoid refcount leak.
CVE-2023-54071 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: use work to update rate to avoid RCU warning The ieee80211_ops::sta_rc_update must be atomic, because ieee80211_chan_bw_change() holds rcu_read lock while calling drv_sta_rc_update(), so create a work to do original things. Voluntary context switch within RCU read-side critical section! WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x571/0x5d0 CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE Workqueue: phy3 ieee80211_chswitch_work [mac80211] RIP: 0010:rcu_note_context_switch+0x571/0x5d0 Call Trace: <TASK> __schedule+0xb0/0x1460 ? __mod_timer+0x116/0x360 schedule+0x5a/0xc0 schedule_timeout+0x87/0x150 ? trace_raw_output_tick_stop+0x60/0x60 wait_for_completion_timeout+0x7b/0x140 usb_start_wait_urb+0x82/0x160 [usbcore usb_control_msg+0xe3/0x140 [usbcore rtw_usb_read+0x88/0xe0 [rtw_usb rtw_usb_read8+0xf/0x10 [rtw_usb rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core drv_sta_rc_update+0x7c/0x160 [mac80211 ieee80211_chan_bw_change+0xfb/0x110 [mac80211 ieee80211_change_chanctx+0x38/0x130 [mac80211 ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211 ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211 ieee80211_chswitch_work+0x95/0x170 [mac80211 process_one_work+0x201/0x410 worker_thread+0x4a/0x3b0 ? process_one_work+0x410/0x410 kthread+0xe1/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK>
CVE-2023-54049 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: rpmsg: glink: Add check for kstrdup Add check for the return value of kstrdup() and return the error if it fails in order to avoid NULL pointer dereference.