| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mlxbf_gige: stop interface during shutdown
The mlxbf_gige driver intermittantly encounters a NULL pointer
exception while the system is shutting down via "reboot" command.
The mlxbf_driver will experience an exception right after executing
its shutdown() method. One example of this exception is:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000070
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000011d373000
[0000000000000070] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 96000004 [#1] SMP
CPU: 0 PID: 13 Comm: ksoftirqd/0 Tainted: G S OE 5.15.0-bf.6.gef6992a #1
Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS 4.0.2.12669 Apr 21 2023
pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : mlxbf_gige_handle_tx_complete+0xc8/0x170 [mlxbf_gige]
lr : mlxbf_gige_poll+0x54/0x160 [mlxbf_gige]
sp : ffff8000080d3c10
x29: ffff8000080d3c10 x28: ffffcce72cbb7000 x27: ffff8000080d3d58
x26: ffff0000814e7340 x25: ffff331cd1a05000 x24: ffffcce72c4ea008
x23: ffff0000814e4b40 x22: ffff0000814e4d10 x21: ffff0000814e4128
x20: 0000000000000000 x19: ffff0000814e4a80 x18: ffffffffffffffff
x17: 000000000000001c x16: ffffcce72b4553f4 x15: ffff80008805b8a7
x14: 0000000000000000 x13: 0000000000000030 x12: 0101010101010101
x11: 7f7f7f7f7f7f7f7f x10: c2ac898b17576267 x9 : ffffcce720fa5404
x8 : ffff000080812138 x7 : 0000000000002e9a x6 : 0000000000000080
x5 : ffff00008de3b000 x4 : 0000000000000000 x3 : 0000000000000001
x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
mlxbf_gige_handle_tx_complete+0xc8/0x170 [mlxbf_gige]
mlxbf_gige_poll+0x54/0x160 [mlxbf_gige]
__napi_poll+0x40/0x1c8
net_rx_action+0x314/0x3a0
__do_softirq+0x128/0x334
run_ksoftirqd+0x54/0x6c
smpboot_thread_fn+0x14c/0x190
kthread+0x10c/0x110
ret_from_fork+0x10/0x20
Code: 8b070000 f9000ea0 f95056c0 f86178a1 (b9407002)
---[ end trace 7cc3941aa0d8e6a4 ]---
Kernel panic - not syncing: Oops: Fatal exception in interrupt
Kernel Offset: 0x4ce722520000 from 0xffff800008000000
PHYS_OFFSET: 0x80000000
CPU features: 0x000005c1,a3330e5a
Memory Limit: none
---[ end Kernel panic - not syncing: Oops: Fatal exception in interrupt ]---
During system shutdown, the mlxbf_gige driver's shutdown() is always executed.
However, the driver's stop() method will only execute if networking interface
configuration logic within the Linux distribution has been setup to do so.
If shutdown() executes but stop() does not execute, NAPI remains enabled
and this can lead to an exception if NAPI is scheduled while the hardware
interface has only been partially deinitialized.
The networking interface managed by the mlxbf_gige driver must be properly
stopped during system shutdown so that IFF_UP is cleared, the hardware
interface is put into a clean state, and NAPI is fully deinitialized. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: mchp-pci1xxx: Fix a possible null pointer dereference in pci1xxx_spi_probe
In function pci1xxxx_spi_probe, there is a potential null pointer that
may be caused by a failed memory allocation by the function devm_kzalloc.
Hence, a null pointer check needs to be added to prevent null pointer
dereferencing later in the code.
To fix this issue, spi_bus->spi_int[iter] should be checked. The memory
allocated by devm_kzalloc will be automatically released, so just directly
return -ENOMEM without worrying about memory leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
aio: Fix null ptr deref in aio_complete() wakeup
list_del_init_careful() needs to be the last access to the wait queue
entry - it effectively unlocks access.
Previously, finish_wait() would see the empty list head and skip taking
the lock, and then we'd return - but the completion path would still
attempt to do the wakeup after the task_struct pointer had been
overwritten. |
| In the Linux kernel, the following vulnerability has been resolved:
icmp: prevent possible NULL dereferences from icmp_build_probe()
First problem is a double call to __in_dev_get_rcu(), because
the second one could return NULL.
if (__in_dev_get_rcu(dev) && __in_dev_get_rcu(dev)->ifa_list)
Second problem is a read from dev->ip6_ptr with no NULL check:
if (!list_empty(&rcu_dereference(dev->ip6_ptr)->addr_list))
Use the correct RCU API to fix these.
v2: add missing include <net/addrconf.h> |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: qca: fix NULL-deref on non-serdev suspend
Qualcomm ROME controllers can be registered from the Bluetooth line
discipline and in this case the HCI UART serdev pointer is NULL.
Add the missing sanity check to prevent a NULL-pointer dereference when
wakeup() is called for a non-serdev controller during suspend.
Just return true for now to restore the original behaviour and address
the crash with pre-6.2 kernels, which do not have commit e9b3e5b8c657
("Bluetooth: hci_qca: only assign wakeup with serial port support") that
causes the crash to happen already at setup() time. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: qca: fix NULL-deref on non-serdev setup
Qualcomm ROME controllers can be registered from the Bluetooth line
discipline and in this case the HCI UART serdev pointer is NULL.
Add the missing sanity check to prevent a NULL-pointer dereference when
setup() is called for a non-serdev controller. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: zswap: fix shrinker NULL crash with cgroup_disable=memory
Christian reports a NULL deref in zswap that he bisected down to the zswap
shrinker. The issue also cropped up in the bug trackers of libguestfs [1]
and the Red Hat bugzilla [2].
The problem is that when memcg is disabled with the boot time flag, the
zswap shrinker might get called with sc->memcg == NULL. This is okay in
many places, like the lruvec operations. But it crashes in
memcg_page_state() - which is only used due to the non-node accounting of
cgroup's the zswap memory to begin with.
Nhat spotted that the memcg can be NULL in the memcg-disabled case, and I
was then able to reproduce the crash locally as well.
[1] https://github.com/libguestfs/libguestfs/issues/139
[2] https://bugzilla.redhat.com/show_bug.cgi?id=2275252 |
| In the Linux kernel, the following vulnerability has been resolved:
fpga: region: add owner module and take its refcount
The current implementation of the fpga region assumes that the low-level
module registers a driver for the parent device and uses its owner pointer
to take the module's refcount. This approach is problematic since it can
lead to a null pointer dereference while attempting to get the region
during programming if the parent device does not have a driver.
To address this problem, add a module owner pointer to the fpga_region
struct and use it to take the module's refcount. Modify the functions for
registering a region to take an additional owner module parameter and
rename them to avoid conflicts. Use the old function names for helper
macros that automatically set the module that registers the region as the
owner. This ensures compatibility with existing low-level control modules
and reduces the chances of registering a region without setting the owner.
Also, update the documentation to keep it consistent with the new interface
for registering an fpga region. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: of_property: Return error for int_map allocation failure
Return -ENOMEM from of_pci_prop_intr_map() if kcalloc() fails to prevent a
NULL pointer dereference in this case.
[bhelgaas: commit log] |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: ncm: Avoid dropping datagrams of properly parsed NTBs
It is observed sometimes when tethering is used over NCM with Windows 11
as host, at some instances, the gadget_giveback has one byte appended at
the end of a proper NTB. When the NTB is parsed, unwrap call looks for
any leftover bytes in SKB provided by u_ether and if there are any pending
bytes, it treats them as a separate NTB and parses it. But in case the
second NTB (as per unwrap call) is faulty/corrupt, all the datagrams that
were parsed properly in the first NTB and saved in rx_list are dropped.
Adding a few custom traces showed the following:
[002] d..1 7828.532866: dwc3_gadget_giveback: ep1out:
req 000000003868811a length 1025/16384 zsI ==> 0
[002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb toprocess: 1025
[002] d..1 7828.532867: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342
[002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb seq: 0xce67
[002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x400
[002] d..1 7828.532868: ncm_unwrap_ntb: K: ncm_unwrap_ntb ndp_len: 0x10
[002] d..1 7828.532869: ncm_unwrap_ntb: K: Parsed NTB with 1 frames
In this case, the giveback is of 1025 bytes and block length is 1024.
The rest 1 byte (which is 0x00) won't be parsed resulting in drop of
all datagrams in rx_list.
Same is case with packets of size 2048:
[002] d..1 7828.557948: dwc3_gadget_giveback: ep1out:
req 0000000011dfd96e length 2049/16384 zsI ==> 0
[002] d..1 7828.557949: ncm_unwrap_ntb: K: ncm_unwrap_ntb nth: 1751999342
[002] d..1 7828.557950: ncm_unwrap_ntb: K: ncm_unwrap_ntb blk_len: 0x800
Lecroy shows one byte coming in extra confirming that the byte is coming
in from PC:
Transfer 2959 - Bytes Transferred(1025) Timestamp((18.524 843 590)
- Transaction 8391 - Data(1025 bytes) Timestamp(18.524 843 590)
--- Packet 4063861
Data(1024 bytes)
Duration(2.117us) Idle(14.700ns) Timestamp(18.524 843 590)
--- Packet 4063863
Data(1 byte)
Duration(66.160ns) Time(282.000ns) Timestamp(18.524 845 722)
According to Windows driver, no ZLP is needed if wBlockLength is non-zero,
because the non-zero wBlockLength has already told the function side the
size of transfer to be expected. However, there are in-market NCM devices
that rely on ZLP as long as the wBlockLength is multiple of wMaxPacketSize.
To deal with such devices, it pads an extra 0 at end so the transfer is no
longer multiple of wMaxPacketSize. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix NULL domain on device release
In the kdump kernel, the IOMMU operates in deferred_attach mode. In this
mode, info->domain may not yet be assigned by the time the release_device
function is called. It leads to the following crash in the crash kernel:
BUG: kernel NULL pointer dereference, address: 000000000000003c
...
RIP: 0010:do_raw_spin_lock+0xa/0xa0
...
_raw_spin_lock_irqsave+0x1b/0x30
intel_iommu_release_device+0x96/0x170
iommu_deinit_device+0x39/0xf0
__iommu_group_remove_device+0xa0/0xd0
iommu_bus_notifier+0x55/0xb0
notifier_call_chain+0x5a/0xd0
blocking_notifier_call_chain+0x41/0x60
bus_notify+0x34/0x50
device_del+0x269/0x3d0
pci_remove_bus_device+0x77/0x100
p2sb_bar+0xae/0x1d0
...
i801_probe+0x423/0x740
Use the release_domain mechanism to fix it. The scalable mode context
entry which is not part of release domain should be cleared in
release_device(). |
| In the Linux kernel, the following vulnerability has been resolved:
backlight: hx8357: Fix potential NULL pointer dereference
The "im" pins are optional. Add missing check in the hx8357_probe(). |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: sun8i-ce - Fix use after free in unprepare
sun8i_ce_cipher_unprepare should be called before
crypto_finalize_skcipher_request, because client callbacks may
immediately free memory, that isn't needed anymore. But it will be
used by unprepare after free. Before removing prepare/unprepare
callbacks it was handled by crypto engine in crypto_finalize_request.
Usually that results in a pointer dereference problem during a in
crypto selftest.
Unable to handle kernel NULL pointer dereference at
virtual address 0000000000000030
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000004716d000
[0000000000000030] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] SMP
This problem is detected by KASAN as well.
==================================================================
BUG: KASAN: slab-use-after-free in sun8i_ce_cipher_do_one+0x6e8/0xf80 [sun8i_ce]
Read of size 8 at addr ffff00000dcdc040 by task 1c15000.crypto-/373
Hardware name: Pine64 PinePhone (1.2) (DT)
Call trace:
dump_backtrace+0x9c/0x128
show_stack+0x20/0x38
dump_stack_lvl+0x48/0x60
print_report+0xf8/0x5d8
kasan_report+0x90/0xd0
__asan_load8+0x9c/0xc0
sun8i_ce_cipher_do_one+0x6e8/0xf80 [sun8i_ce]
crypto_pump_work+0x354/0x620 [crypto_engine]
kthread_worker_fn+0x244/0x498
kthread+0x168/0x178
ret_from_fork+0x10/0x20
Allocated by task 379:
kasan_save_stack+0x3c/0x68
kasan_set_track+0x2c/0x40
kasan_save_alloc_info+0x24/0x38
__kasan_kmalloc+0xd4/0xd8
__kmalloc+0x74/0x1d0
alg_test_skcipher+0x90/0x1f0
alg_test+0x24c/0x830
cryptomgr_test+0x38/0x60
kthread+0x168/0x178
ret_from_fork+0x10/0x20
Freed by task 379:
kasan_save_stack+0x3c/0x68
kasan_set_track+0x2c/0x40
kasan_save_free_info+0x38/0x60
__kasan_slab_free+0x100/0x170
slab_free_freelist_hook+0xd4/0x1e8
__kmem_cache_free+0x15c/0x290
kfree+0x74/0x100
kfree_sensitive+0x80/0xb0
alg_test_skcipher+0x12c/0x1f0
alg_test+0x24c/0x830
cryptomgr_test+0x38/0x60
kthread+0x168/0x178
ret_from_fork+0x10/0x20
The buggy address belongs to the object at ffff00000dcdc000
which belongs to the cache kmalloc-256 of size 256
The buggy address is located 64 bytes inside of
freed 256-byte region [ffff00000dcdc000, ffff00000dcdc100) |
| In the Linux kernel, the following vulnerability has been resolved:
thunderbolt: Fix NULL pointer dereference in tb_port_update_credits()
Olliver reported that his system crashes when plugging in Thunderbolt 1
device:
BUG: kernel NULL pointer dereference, address: 0000000000000020
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
RIP: 0010:tb_port_do_update_credits+0x1b/0x130 [thunderbolt]
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x171/0x4e0
? exc_page_fault+0x7f/0x180
? asm_exc_page_fault+0x26/0x30
? tb_port_do_update_credits+0x1b/0x130
? tb_switch_update_link_attributes+0x83/0xd0
tb_switch_add+0x7a2/0xfe0
tb_scan_port+0x236/0x6f0
tb_handle_hotplug+0x6db/0x900
process_one_work+0x171/0x340
worker_thread+0x27b/0x3a0
? __pfx_worker_thread+0x10/0x10
kthread+0xe5/0x120
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
This is due the fact that some Thunderbolt 1 devices only have one lane
adapter. Fix this by checking for the lane 1 before we read its credits. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: fix RCU usage in connect path
With lockdep enabled, calls to the connect function from cfg802.11 layer
lead to the following warning:
=============================
WARNING: suspicious RCU usage
6.7.0-rc1-wt+ #333 Not tainted
-----------------------------
drivers/net/wireless/microchip/wilc1000/hif.c:386
suspicious rcu_dereference_check() usage!
[...]
stack backtrace:
CPU: 0 PID: 100 Comm: wpa_supplicant Not tainted 6.7.0-rc1-wt+ #333
Hardware name: Atmel SAMA5
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x34/0x48
dump_stack_lvl from wilc_parse_join_bss_param+0x7dc/0x7f4
wilc_parse_join_bss_param from connect+0x2c4/0x648
connect from cfg80211_connect+0x30c/0xb74
cfg80211_connect from nl80211_connect+0x860/0xa94
nl80211_connect from genl_rcv_msg+0x3fc/0x59c
genl_rcv_msg from netlink_rcv_skb+0xd0/0x1f8
netlink_rcv_skb from genl_rcv+0x2c/0x3c
genl_rcv from netlink_unicast+0x3b0/0x550
netlink_unicast from netlink_sendmsg+0x368/0x688
netlink_sendmsg from ____sys_sendmsg+0x190/0x430
____sys_sendmsg from ___sys_sendmsg+0x110/0x158
___sys_sendmsg from sys_sendmsg+0xe8/0x150
sys_sendmsg from ret_fast_syscall+0x0/0x1c
This warning is emitted because in the connect path, when trying to parse
target BSS parameters, we dereference a RCU pointer whithout being in RCU
critical section.
Fix RCU dereference usage by moving it to a RCU read critical section. To
avoid wrapping the whole wilc_parse_join_bss_param under the critical
section, just use the critical section to copy ies data |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: brcmstb-avs-cpufreq: add check for cpufreq_cpu_get's return value
cpufreq_cpu_get may return NULL. To avoid NULL-dereference check it
and return 0 in case of error.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcm80211: handle pmk_op allocation failure
The kzalloc() in brcmf_pmksa_v3_op() will return null if the
physical memory has run out. As a result, if we dereference
the null value, the null pointer dereference bug will happen.
Return -ENOMEM from brcmf_pmksa_v3_op() if kzalloc() fails
for pmk_op. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: fix phy_get_internal_delay accessing an empty array
The phy_get_internal_delay function could try to access to an empty
array in the case that the driver is calling phy_get_internal_delay
without defining delay_values and rx-internal-delay-ps or
tx-internal-delay-ps is defined to 0 in the device-tree.
This will lead to "unable to handle kernel NULL pointer dereference at
virtual address 0". To avoid this kernel oops, the test should be delay
>= 0. As there is already delay < 0 test just before, the test could
only be size == 0. |
| In the Linux kernel, the following vulnerability has been resolved:
nfp: flower: handle acti_netdevs allocation failure
The kmalloc_array() in nfp_fl_lag_do_work() will return null, if
the physical memory has run out. As a result, if we dereference
the acti_netdevs, the null pointer dereference bugs will happen.
This patch adds a check to judge whether allocation failure occurs.
If it happens, the delayed work will be rescheduled and try again. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential NULL pointer dereferences in 'dcn10_set_output_transfer_func()'
The 'stream' pointer is used in dcn10_set_output_transfer_func() before
the check if 'stream' is NULL.
Fixes the below:
drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn10/dcn10_hwseq.c:1892 dcn10_set_output_transfer_func() warn: variable dereferenced before check 'stream' (see line 1875) |