| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw was found in util-linux. This vulnerability allows a heap buffer overread when processing 256-byte usernames, specifically within the `setpwnam()` function, affecting SUID (Set User ID) login-utils utilities writing to the password database. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid1: Fix stack memory use after return in raid1_reshape
In the raid1_reshape function, newpool is
allocated on the stack and assigned to conf->r1bio_pool.
This results in conf->r1bio_pool.wait.head pointing
to a stack address.
Accessing this address later can lead to a kernel panic.
Example access path:
raid1_reshape()
{
// newpool is on the stack
mempool_t newpool, oldpool;
// initialize newpool.wait.head to stack address
mempool_init(&newpool, ...);
conf->r1bio_pool = newpool;
}
raid1_read_request() or raid1_write_request()
{
alloc_r1bio()
{
mempool_alloc()
{
// if pool->alloc fails
remove_element()
{
--pool->curr_nr;
}
}
}
}
mempool_free()
{
if (pool->curr_nr < pool->min_nr) {
// pool->wait.head is a stack address
// wake_up() will try to access this invalid address
// which leads to a kernel panic
return;
wake_up(&pool->wait);
}
}
Fix:
reinit conf->r1bio_pool.wait after assigning newpool. |
| A flaw was found in WebKitGTK and WPE WebKit. This vulnerability allows an out-of-bounds read and integer underflow, leading to a UIProcess crash (DoS) via a crafted payload to the GLib remote inspector server. |
| Out-of-bounds access in ASR180x 、ASR190x in lte-telephony, This vulnerability is associated with program files apps/lzma/src/LzmaEnc.c.
This issue affects Falcon_Linux、Kestrel、Lapwing_Linux: before v1536. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix UBSAN shift-out-of-bounds warning
If get_num_sdma_queues or get_num_xgmi_sdma_queues is 0, we end up
doing a shift operation where the number of bits shifted equals
number of bits in the operand. This behaviour is undefined.
Set num_sdma_queues or num_xgmi_sdma_queues to ULLONG_MAX, if the
count is >= number of bits in the operand.
Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/1472 |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/ptrace: Fix stack-out-of-bounds read in regs_get_kernel_stack_nth()
KASAN reports a stack-out-of-bounds read in regs_get_kernel_stack_nth().
Call Trace:
[ 97.283505] BUG: KASAN: stack-out-of-bounds in regs_get_kernel_stack_nth+0xa8/0xc8
[ 97.284677] Read of size 8 at addr ffff800089277c10 by task 1.sh/2550
[ 97.285732]
[ 97.286067] CPU: 7 PID: 2550 Comm: 1.sh Not tainted 6.6.0+ #11
[ 97.287032] Hardware name: linux,dummy-virt (DT)
[ 97.287815] Call trace:
[ 97.288279] dump_backtrace+0xa0/0x128
[ 97.288946] show_stack+0x20/0x38
[ 97.289551] dump_stack_lvl+0x78/0xc8
[ 97.290203] print_address_description.constprop.0+0x84/0x3c8
[ 97.291159] print_report+0xb0/0x280
[ 97.291792] kasan_report+0x84/0xd0
[ 97.292421] __asan_load8+0x9c/0xc0
[ 97.293042] regs_get_kernel_stack_nth+0xa8/0xc8
[ 97.293835] process_fetch_insn+0x770/0xa30
[ 97.294562] kprobe_trace_func+0x254/0x3b0
[ 97.295271] kprobe_dispatcher+0x98/0xe0
[ 97.295955] kprobe_breakpoint_handler+0x1b0/0x210
[ 97.296774] call_break_hook+0xc4/0x100
[ 97.297451] brk_handler+0x24/0x78
[ 97.298073] do_debug_exception+0xac/0x178
[ 97.298785] el1_dbg+0x70/0x90
[ 97.299344] el1h_64_sync_handler+0xcc/0xe8
[ 97.300066] el1h_64_sync+0x78/0x80
[ 97.300699] kernel_clone+0x0/0x500
[ 97.301331] __arm64_sys_clone+0x70/0x90
[ 97.302084] invoke_syscall+0x68/0x198
[ 97.302746] el0_svc_common.constprop.0+0x11c/0x150
[ 97.303569] do_el0_svc+0x38/0x50
[ 97.304164] el0_svc+0x44/0x1d8
[ 97.304749] el0t_64_sync_handler+0x100/0x130
[ 97.305500] el0t_64_sync+0x188/0x190
[ 97.306151]
[ 97.306475] The buggy address belongs to stack of task 1.sh/2550
[ 97.307461] and is located at offset 0 in frame:
[ 97.308257] __se_sys_clone+0x0/0x138
[ 97.308910]
[ 97.309241] This frame has 1 object:
[ 97.309873] [48, 184) 'args'
[ 97.309876]
[ 97.310749] The buggy address belongs to the virtual mapping at
[ 97.310749] [ffff800089270000, ffff800089279000) created by:
[ 97.310749] dup_task_struct+0xc0/0x2e8
[ 97.313347]
[ 97.313674] The buggy address belongs to the physical page:
[ 97.314604] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14f69a
[ 97.315885] flags: 0x15ffffe00000000(node=1|zone=2|lastcpupid=0xfffff)
[ 97.316957] raw: 015ffffe00000000 0000000000000000 dead000000000122 0000000000000000
[ 97.318207] raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
[ 97.319445] page dumped because: kasan: bad access detected
[ 97.320371]
[ 97.320694] Memory state around the buggy address:
[ 97.321511] ffff800089277b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 97.322681] ffff800089277b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 97.323846] >ffff800089277c00: 00 00 f1 f1 f1 f1 f1 f1 00 00 00 00 00 00 00 00
[ 97.325023] ^
[ 97.325683] ffff800089277c80: 00 00 00 00 00 00 00 00 00 f3 f3 f3 f3 f3 f3 f3
[ 97.326856] ffff800089277d00: f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 00 00
This issue seems to be related to the behavior of some gcc compilers and
was also fixed on the s390 architecture before:
commit d93a855c31b7 ("s390/ptrace: Avoid KASAN false positives in regs_get_kernel_stack_nth()")
As described in that commit, regs_get_kernel_stack_nth() has confirmed that
`addr` is on the stack, so reading the value at `*addr` should be allowed.
Use READ_ONCE_NOCHECK() helper to silence the KASAN check for this case.
[will: Use '*addr' as the argument to READ_ONCE_NOCHECK()] |
| A maliciously crafted CATPRODUCT file, when parsed through certain Autodesk products, can force an Out-of-Bounds Read vulnerability. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| A maliciously crafted CATPART file, when parsed through certain Autodesk products, can force an Out-of-Bounds Read vulnerability. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| A maliciously crafted PRT file, when parsed through certain Autodesk products, can force an Out-of-Bounds Read vulnerability. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| A maliciously crafted PRT file, when parsed through certain Autodesk products, can force an Out-of-Bounds Read vulnerability. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| A maliciously crafted CATPRODUCT file, when parsed through certain Autodesk products, can force an Out-of-Bounds Read vulnerability. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| A maliciously crafted SLDPRT file, when parsed through certain Autodesk products, can force an Out-of-Bounds Read vulnerability. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| A maliciously crafted SLDPRT file, when parsed through certain Autodesk products, can force an Out-of-Bounds Read vulnerability. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: max20086: fix invalid memory access
max20086_parse_regulators_dt() calls of_regulator_match() using an
array of struct of_regulator_match allocated on the stack for the
matches argument.
of_regulator_match() calls devm_of_regulator_put_matches(), which calls
devres_alloc() to allocate a struct devm_of_regulator_matches which will
be de-allocated using devm_of_regulator_put_matches().
struct devm_of_regulator_matches is populated with the stack allocated
matches array.
If the device fails to probe, devm_of_regulator_put_matches() will be
called and will try to call of_node_put() on that stack pointer,
generating the following dmesg entries:
max20086 6-0028: Failed to read DEVICE_ID reg: -121
kobject: '\xc0$\xa5\x03' (000000002cebcb7a): is not initialized, yet
kobject_put() is being called.
Followed by a stack trace matching the call flow described above.
Switch to allocating the matches array using devm_kcalloc() to
avoid accessing the stack pointer long after it's out of scope.
This also has the advantage of allowing multiple max20086 to probe
without overriding the data stored inside the global of_regulator_match. |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: aqc111: fix error handling of usbnet read calls
Syzkaller, courtesy of syzbot, identified an error (see report [1]) in
aqc111 driver, caused by incomplete sanitation of usb read calls'
results. This problem is quite similar to the one fixed in commit
920a9fa27e78 ("net: asix: add proper error handling of usb read errors").
For instance, usbnet_read_cmd() may read fewer than 'size' bytes,
even if the caller expected the full amount, and aqc111_read_cmd()
will not check its result properly. As [1] shows, this may lead
to MAC address in aqc111_bind() being only partly initialized,
triggering KMSAN warnings.
Fix the issue by verifying that the number of bytes read is
as expected and not less.
[1] Partial syzbot report:
BUG: KMSAN: uninit-value in is_valid_ether_addr include/linux/etherdevice.h:208 [inline]
BUG: KMSAN: uninit-value in usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830
is_valid_ether_addr include/linux/etherdevice.h:208 [inline]
usbnet_probe+0x2e57/0x4390 drivers/net/usb/usbnet.c:1830
usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396
call_driver_probe drivers/base/dd.c:-1 [inline]
really_probe+0x4d1/0xd90 drivers/base/dd.c:658
__driver_probe_device+0x268/0x380 drivers/base/dd.c:800
...
Uninit was stored to memory at:
dev_addr_mod+0xb0/0x550 net/core/dev_addr_lists.c:582
__dev_addr_set include/linux/netdevice.h:4874 [inline]
eth_hw_addr_set include/linux/etherdevice.h:325 [inline]
aqc111_bind+0x35f/0x1150 drivers/net/usb/aqc111.c:717
usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772
usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396
...
Uninit was stored to memory at:
ether_addr_copy include/linux/etherdevice.h:305 [inline]
aqc111_read_perm_mac drivers/net/usb/aqc111.c:663 [inline]
aqc111_bind+0x794/0x1150 drivers/net/usb/aqc111.c:713
usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772
usb_probe_interface+0xd01/0x1310 drivers/usb/core/driver.c:396
call_driver_probe drivers/base/dd.c:-1 [inline]
...
Local variable buf.i created at:
aqc111_read_perm_mac drivers/net/usb/aqc111.c:656 [inline]
aqc111_bind+0x221/0x1150 drivers/net/usb/aqc111.c:713
usbnet_probe+0xbe6/0x4390 drivers/net/usb/usbnet.c:1772 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: fix the 'para' buffer size to avoid reading out of bounds
Set the size to 6 instead of 2, since 'para' array is passed to
'rtw_fw_bt_wifi_control(rtwdev, para[0], ¶[1])', which reads
5 bytes:
void rtw_fw_bt_wifi_control(struct rtw_dev *rtwdev, u8 op_code, u8 *data)
{
...
SET_BT_WIFI_CONTROL_DATA1(h2c_pkt, *data);
SET_BT_WIFI_CONTROL_DATA2(h2c_pkt, *(data + 1));
...
SET_BT_WIFI_CONTROL_DATA5(h2c_pkt, *(data + 4));
Detected using the static analysis tool - Svace. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix out-of-bounds read in snd_usb_get_audioformat_uac3()
In snd_usb_get_audioformat_uac3(), the length value returned from
snd_usb_ctl_msg() is used directly for memory allocation without
validation. This length is controlled by the USB device.
The allocated buffer is cast to a uac3_cluster_header_descriptor
and its fields are accessed without verifying that the buffer
is large enough. If the device returns a smaller than expected
length, this leads to an out-of-bounds read.
Add a length check to ensure the buffer is large enough for
uac3_cluster_header_descriptor. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: at91: Fix possible out-of-boundary access
at91_gpio_probe() doesn't check that given OF alias is not available or
something went wrong when trying to get it. This might have consequences
when accessing gpio_chips array with that value as an index. Note, that
BUG() can be compiled out and hence won't actually perform the required
checks. |
| Apache HTTP Server 2.4.53 and earlier may crash or disclose information due to a read beyond bounds in ap_strcmp_match() when provided with an extremely large input buffer. While no code distributed with the server can be coerced into such a call, third-party modules or lua scripts that use ap_strcmp_match() may hypothetically be affected. |
| libxml2 20904-GITv2.9.4-16-g0741801 is vulnerable to a heap-based buffer over-read in the xmlDictComputeFastKey function in dict.c. This vulnerability causes programs that use libxml2, such as PHP, to crash. This vulnerability exists because of an incomplete fix for libxml2 Bug 759398. |