| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The IP stack in the Linux kernel through 4.8.2 allows remote attackers to cause a denial of service (stack consumption and panic) or possibly have unspecified other impact by triggering use of the GRO path for large crafted packets, as demonstrated by packets that contain only VLAN headers, a related issue to CVE-2016-8666. |
| The key_reject_and_link function in security/keys/key.c in the Linux kernel through 4.6.3 does not ensure that a certain data structure is initialized, which allows local users to cause a denial of service (system crash) via vectors involving a crafted keyctl request2 command. |
| Race condition in the IPC object implementation in the Linux kernel through 4.2.3 allows local users to gain privileges by triggering an ipc_addid call that leads to uid and gid comparisons against uninitialized data, related to msg.c, shm.c, and util.c. |
| The IPv6 stack in the Linux kernel before 4.3.3 mishandles options data, which allows local users to gain privileges or cause a denial of service (use-after-free and system crash) via a crafted sendmsg system call. |
| The icmp_check_sysrq function in net/ipv4/icmp.c in the kernel.org projects/rt patches for the Linux kernel, as used in the kernel-rt package before 3.10.0-327.22.1 in Red Hat Enterprise Linux for Real Time 7 and other products, allows remote attackers to execute SysRq commands via crafted ICMP Echo Request packets, as demonstrated by a brute-force attack to discover a cookie, or an attack that occurs after reading the local icmp_echo_sysrq file. |
| The (1) udp_recvmsg and (2) udpv6_recvmsg functions in the Linux kernel before 4.0.6 provide inappropriate -EAGAIN return values, which allows remote attackers to cause a denial of service (EPOLLET epoll application read outage) via an incorrect checksum in a UDP packet, a different vulnerability than CVE-2015-5364. |
| Use-after-free vulnerability in the sctp_assoc_update function in net/sctp/associola.c in the Linux kernel before 3.18.8 allows remote attackers to cause a denial of service (slab corruption and panic) or possibly have unspecified other impact by triggering an INIT collision that leads to improper handling of shared-key data. |
| The Linux kernel, as used in Red Hat Enterprise Linux 7.2 and Red Hat Enterprise MRG 2 and when booted with UEFI Secure Boot enabled, allows local users to bypass intended Secure Boot restrictions and execute untrusted code by appending ACPI tables to the initrd. |
| The Crypto API in the Linux kernel before 3.18.5 allows local users to load arbitrary kernel modules via a bind system call for an AF_ALG socket with a module name in the salg_name field, a different vulnerability than CVE-2014-9644. |
| The arch_pick_mmap_layout function in arch/x86/mm/mmap.c in the Linux kernel through 4.5.2 does not properly randomize the legacy base address, which makes it easier for local users to defeat the intended restrictions on the ADDR_NO_RANDOMIZE flag, and bypass the ASLR protection mechanism for a setuid or setgid program, by disabling stack-consumption resource limits. |
| The (1) udp_recvmsg and (2) udpv6_recvmsg functions in the Linux kernel before 4.0.6 do not properly consider yielding a processor, which allows remote attackers to cause a denial of service (system hang) via incorrect checksums within a UDP packet flood. |
| The IPv4 implementation in the Linux kernel before 4.5.2 mishandles destruction of device objects, which allows guest OS users to cause a denial of service (host OS networking outage) by arranging for a large number of IP addresses. |
| The netfilter subsystem in the Linux kernel through 4.5.2 does not validate certain offset fields, which allows local users to gain privileges or cause a denial of service (heap memory corruption) via an IPT_SO_SET_REPLACE setsockopt call. |
| The sctp_init function in net/sctp/protocol.c in the Linux kernel before 4.2.3 has an incorrect sequence of protocol-initialization steps, which allows local users to cause a denial of service (panic or memory corruption) by creating SCTP sockets before all of the steps have finished. |
| The __switch_to function in arch/x86/kernel/process_64.c in the Linux kernel through 3.18.1 does not ensure that Thread Local Storage (TLS) descriptors are loaded before proceeding with other steps, which makes it easier for local users to bypass the ASLR protection mechanism via a crafted application that reads a TLS base address. |
| The trace_writeback_dirty_page implementation in include/trace/events/writeback.h in the Linux kernel before 4.4 improperly interacts with mm/migrate.c, which allows local users to cause a denial of service (NULL pointer dereference and system crash) or possibly have unspecified other impact by triggering a certain page move. |
| arch/x86/entry/entry_64.S in the Linux kernel before 4.1.6 on the x86_64 platform mishandles IRET faults in processing NMIs that occurred during userspace execution, which might allow local users to gain privileges by triggering an NMI. |
| The vdso_addr function in arch/x86/vdso/vma.c in the Linux kernel through 3.18.2 does not properly choose memory locations for the vDSO area, which makes it easier for local users to bypass the ASLR protection mechanism by guessing a location at the end of a PMD. |
| fs/pipe.c in the Linux kernel before 4.5 does not limit the amount of unread data in pipes, which allows local users to cause a denial of service (memory consumption) by creating many pipes with non-default sizes. |
| Memory leak in the __key_link_end function in security/keys/keyring.c in the Linux kernel before 4.1.4 allows local users to cause a denial of service (memory consumption) via many add_key system calls that refer to existing keys. |