| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The WRMSR processing functionality in the KVM subsystem in the Linux kernel through 3.17.2 does not properly handle the writing of a non-canonical address to a model-specific register, which allows guest OS users to cause a denial of service (host OS crash) by leveraging guest OS privileges, related to the wrmsr_interception function in arch/x86/kvm/svm.c and the handle_wrmsr function in arch/x86/kvm/vmx.c. |
| The virtqueue_pop function in hw/virtio/virtio.c in QEMU allows local guest OS administrators to cause a denial of service (memory consumption and QEMU process crash) by submitting requests without waiting for completion. |
| The VGA module in QEMU improperly performs bounds checking on banked access to video memory, which allows local guest OS administrators to execute arbitrary code on the host by changing access modes after setting the bank register, aka the "Dark Portal" issue. |
| Heap-based buffer overflow in the PCNET controller in QEMU allows remote attackers to execute arbitrary code by sending a packet with TXSTATUS_STARTPACKET set and then a crafted packet with TXSTATUS_DEVICEOWNS set. |
| virt-who uses world-readable permissions for /etc/sysconfig/virt-who, which allows local users to obtain password for hypervisors by reading the file. |
| The Floppy Disk Controller (FDC) in QEMU, as used in Xen 4.5.x and earlier and KVM, allows local guest users to cause a denial of service (out-of-bounds write and guest crash) or possibly execute arbitrary code via the (1) FD_CMD_READ_ID, (2) FD_CMD_DRIVE_SPECIFICATION_COMMAND, or other unspecified commands, aka VENOM. |
| Race condition in the __kvm_migrate_pit_timer function in arch/x86/kvm/i8254.c in the KVM subsystem in the Linux kernel through 3.17.2 allows guest OS users to cause a denial of service (host OS crash) by leveraging incorrect PIT emulation. |
| Heap-based buffer overflow in the ne2000_receive function in hw/net/ne2000.c in QEMU before 2.4.0.1 allows guest OS users to cause a denial of service (instance crash) or possibly execute arbitrary code via vectors related to receiving packets. |
| The pit_ioport_read function in the Programmable Interval Timer (PIT) emulation in i8254.c in KVM 83 does not properly use the pit_state data structure, which allows guest OS users to cause a denial of service (host OS crash or hang) by attempting to read the /dev/port file. |
| libspice, as used in QEMU-KVM in the Hypervisor (aka rhev-hypervisor) in Red Hat Enterprise Virtualization (RHEV) 2.2 and qspice 0.3.0, does not properly validate guest QXL driver pointers, which allows guest OS users to cause a denial of service (invalid pointer dereference and guest OS crash) or possibly gain privileges via unspecified vectors. |
| libvirtd in libvirt before 0.9.0 does not use thread-safe error reporting, which allows remote attackers to cause a denial of service (crash) by causing multiple threads to report errors at the same time. |
| The KVM implementation in the Linux kernel before 3.3.4 does not properly manage the relationships between memory slots and the iommu, which allows guest OS users to cause a denial of service (memory leak and host OS crash) by leveraging administrative access to the guest OS to conduct hotunplug and hotplug operations on devices. |
| libvirt, possibly before 0.9.12, does not properly assign USB devices to virtual machines when multiple devices have the same vendor and product ID, which might cause the wrong device to be associated with a guest and might allow local users to access unintended USB devices. |
| Integer overflow in libvirt before 0.9.3 allows remote authenticated users to cause a denial of service (libvirtd crash) and possibly execute arbitrary code via a crafted VirDomainGetVcpus RPC call that triggers memory corruption. |
| libspice, as used in QEMU-KVM in the Hypervisor (aka rhev-hypervisor) in Red Hat Enterprise Virtualization (RHEV) 2.2 and qspice 0.3.0, does not properly restrict the addresses upon which memory-management actions are performed, which allows guest OS users to cause a denial of service (guest OS crash) or possibly gain privileges via unspecified vectors. |
| The KVM implementation in the Linux kernel before 3.3.6 allows host OS users to cause a denial of service (NULL pointer dereference and host OS crash) by making a KVM_CREATE_IRQCHIP ioctl call after a virtual CPU already exists. |
| The Hypervisor (aka rhev-hypervisor) in Red Hat Enterprise Virtualization (RHEV) 2.2, and KVM 83, when the Intel VT-x extension is enabled, allows guest OS users to cause a denial of service (NULL pointer dereference and host OS crash) via vectors related to instruction emulation. |
| Heap-based buffer overflow in the process_tx_desc function in the e1000 emulation (hw/e1000.c) in qemu-kvm 0.12, and possibly other versions, allows guest OS users to cause a denial of service (QEMU crash) and possibly execute arbitrary code via crafted legacy mode packets. |
| The x86 emulator in KVM 83 does not use the Current Privilege Level (CPL) and I/O Privilege Level (IOPL) in determining the memory access available to CPL3 code, which allows guest OS users to cause a denial of service (guest OS crash) or gain privileges on the guest OS by leveraging access to a (1) IO port or (2) MMIO region, a related issue to CVE-2010-0306. |
| QEMU-KVM, as used in the Hypervisor (aka rhev-hypervisor) in Red Hat Enterprise Virtualization (RHEV) 2.2 and KVM 83, does not properly validate guest QXL driver pointers, which allows guest OS users to cause a denial of service (invalid pointer dereference and guest OS crash) or possibly gain privileges via unspecified vectors. |