| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| SonicWall Email Security version 10.0.9.x contains a vulnerability that allows a post-authenticated attacker to upload an arbitrary file to the remote host. |
| A vulnerability in the SonicWall Email Security version 10.0.9.x allows an attacker to create an administrative account by sending a crafted HTTP request to the remote host. |
| A vulnerability was found in the Infinispan component in Red Hat Data Grid. The REST compare API may have a buffer leak and an out of memory error can occur when sending continual requests with large POST data to the REST API. |
| Cursor is a code editor built for programming with AI. In versions 1.7.44 and below, various NTFS path quirks allow a prompt injection attacker to circumvent sensitive file protections and overwrite files which Cursor requires human approval to overwrite. Modification of some of the protected files can lead to RCE. Must be chained with a prompt injection or malicious model attach. Only affects systems supporting NTFS. This issue is fixed in version 2.0. |
| An issue was discovered in 5.1 before 5.1.14, 4.2 before 4.2.26, and 5.2 before 5.2.8.
NFKC normalization in Python is slow on Windows. As a consequence, `django.http.HttpResponseRedirect`, `django.http.HttpResponsePermanentRedirect`, and the shortcut `django.shortcuts.redirect` were subject to a potential denial-of-service attack via certain inputs with a very large number of Unicode characters.
Earlier, unsupported Django series (such as 5.0.x, 4.1.x, and 3.2.x) were not evaluated and may also be affected.
Django would like to thank Seokchan Yoon for reporting this issue. |
| An issue was discovered in 5.1 before 5.1.14, 4.2 before 4.2.26, and 5.2 before 5.2.8.
The methods `QuerySet.filter()`, `QuerySet.exclude()`, and `QuerySet.get()`, and the class `Q()`, are subject to SQL injection when using a suitably crafted dictionary, with dictionary expansion, as the `_connector` argument.
Earlier, unsupported Django series (such as 5.0.x, 4.1.x, and 3.2.x) were not evaluated and may also be affected.
Django would like to thank cyberstan for reporting this issue. |
| A security issue was discovered in Kubernetes where under certain conditions, an unauthenticated attacker with access to the pod network can achieve arbitrary code execution in the context of the ingress-nginx controller. This can lead to disclosure of Secrets accessible to the controller. (Note that in the default installation, the controller can access all Secrets cluster-wide.) |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority as it is a downstream effect of an already identified vulnerability, CVE-2012-6708. |
| Galette is a membership management web application for non profit organizations. Versions 1.1.5.2 and below allow a user to edit a group name and insert an XSS payload. This issue is fixed in version 1.2.0. |
| Youki is a container runtime written in Rust. In versions 0.5.6 and below, the initial validation of the source /dev/null is insufficient, allowing container escape when youki utilizes bind mounting the container's /dev/null as a file mask. This issue is fixed in version 0.5.7. |
| Galette is a membership management web application for non profit organizations. In versions 1.1.5.2 and below, Galette's Document Type is vulnerable to Cross-site Scripting. This issue is fixed in version 1.2.0. |
| Mantis Bug Tracker (MantisBT) is an open source issue tracker. In versions 2.27.1 and below, when a user edits their profile to change their e-mail address, the system saves it without validating that it actually belongs to the user. This could result in storing an invalid email address, preventing the user from receiving system notifications. Notifications sent to another person's email address could lead to information disclosure. This issue is fixed in version 2.27.2. |
| Mantis Bug Tracker (MantisBT) is an open source issue tracker. Due to incorrect use of loose (==) instead of strict (===) comparison in the authentication code in versions 2.27.1 and below.PHP type juggling will cause certain MD5 hashes matching scientific notation to be interpreted as numbers. Instances using the MD5 login method allow an attacker who knows the victim's username and has access to an account with a password hash that evaluates to zero to log in without knowing the victim's actual password, by using any other password with a hash that also evaluates to zero This issue is fixed in version 2.27.2. |
| Youki is a container runtime written in Rust. In versions 0.5.6 and below, youki’s apparmor handling performs insufficiently strict write-target validation, and when combined with path substitution during pathname resolution, can allow writes to unintended procfs locations. While resolving a path component-by-component, a shared-mount race can substitute intermediate components and redirect the final target. This issue is fixed in version 0.5.7. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: xilinx: don't make a sleepable memory allocation from an atomic context
The following issue was discovered using lockdep:
[ 6.691371] BUG: sleeping function called from invalid context at include/linux/sched/mm.h:209
[ 6.694602] in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 1, name: swapper/0
[ 6.702431] 2 locks held by swapper/0/1:
[ 6.706300] #0: ffffff8800f6f188 (&dev->mutex){....}-{3:3}, at: __device_driver_lock+0x4c/0x90
[ 6.714900] #1: ffffffc009a2abb8 (enable_lock){....}-{2:2}, at: clk_enable_lock+0x4c/0x140
[ 6.723156] irq event stamp: 304030
[ 6.726596] hardirqs last enabled at (304029): [<ffffffc008d17ee0>] _raw_spin_unlock_irqrestore+0xc0/0xd0
[ 6.736142] hardirqs last disabled at (304030): [<ffffffc00876bc5c>] clk_enable_lock+0xfc/0x140
[ 6.744742] softirqs last enabled at (303958): [<ffffffc0080904f0>] _stext+0x4f0/0x894
[ 6.752655] softirqs last disabled at (303951): [<ffffffc0080e53b8>] irq_exit+0x238/0x280
[ 6.760744] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G U 5.15.36 #2
[ 6.768048] Hardware name: xlnx,zynqmp (DT)
[ 6.772179] Call trace:
[ 6.774584] dump_backtrace+0x0/0x300
[ 6.778197] show_stack+0x18/0x30
[ 6.781465] dump_stack_lvl+0xb8/0xec
[ 6.785077] dump_stack+0x1c/0x38
[ 6.788345] ___might_sleep+0x1a8/0x2a0
[ 6.792129] __might_sleep+0x6c/0xd0
[ 6.795655] kmem_cache_alloc_trace+0x270/0x3d0
[ 6.800127] do_feature_check_call+0x100/0x220
[ 6.804513] zynqmp_pm_invoke_fn+0x8c/0xb0
[ 6.808555] zynqmp_pm_clock_getstate+0x90/0xe0
[ 6.813027] zynqmp_pll_is_enabled+0x8c/0x120
[ 6.817327] zynqmp_pll_enable+0x38/0xc0
[ 6.821197] clk_core_enable+0x144/0x400
[ 6.825067] clk_core_enable+0xd4/0x400
[ 6.828851] clk_core_enable+0xd4/0x400
[ 6.832635] clk_core_enable+0xd4/0x400
[ 6.836419] clk_core_enable+0xd4/0x400
[ 6.840203] clk_core_enable+0xd4/0x400
[ 6.843987] clk_core_enable+0xd4/0x400
[ 6.847771] clk_core_enable+0xd4/0x400
[ 6.851555] clk_core_enable_lock+0x24/0x50
[ 6.855683] clk_enable+0x24/0x40
[ 6.858952] fclk_probe+0x84/0xf0
[ 6.862220] platform_probe+0x8c/0x110
[ 6.865918] really_probe+0x110/0x5f0
[ 6.869530] __driver_probe_device+0xcc/0x210
[ 6.873830] driver_probe_device+0x64/0x140
[ 6.877958] __driver_attach+0x114/0x1f0
[ 6.881828] bus_for_each_dev+0xe8/0x160
[ 6.885698] driver_attach+0x34/0x50
[ 6.889224] bus_add_driver+0x228/0x300
[ 6.893008] driver_register+0xc0/0x1e0
[ 6.896792] __platform_driver_register+0x44/0x60
[ 6.901436] fclk_driver_init+0x1c/0x28
[ 6.905220] do_one_initcall+0x104/0x590
[ 6.909091] kernel_init_freeable+0x254/0x2bc
[ 6.913390] kernel_init+0x24/0x130
[ 6.916831] ret_from_fork+0x10/0x20
Fix it by passing the GFP_ATOMIC gfp flag for the corresponding
memory allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: xsk: disable txq irq before flushing hw
ice_qp_dis() intends to stop a given queue pair that is a target of xsk
pool attach/detach. One of the steps is to disable interrupts on these
queues. It currently is broken in a way that txq irq is turned off
*after* HW flush which in turn takes no effect.
ice_qp_dis():
-> ice_qvec_dis_irq()
--> disable rxq irq
--> flush hw
-> ice_vsi_stop_tx_ring()
-->disable txq irq
Below splat can be triggered by following steps:
- start xdpsock WITHOUT loading xdp prog
- run xdp_rxq_info with XDP_TX action on this interface
- start traffic
- terminate xdpsock
[ 256.312485] BUG: kernel NULL pointer dereference, address: 0000000000000018
[ 256.319560] #PF: supervisor read access in kernel mode
[ 256.324775] #PF: error_code(0x0000) - not-present page
[ 256.329994] PGD 0 P4D 0
[ 256.332574] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 256.337006] CPU: 3 PID: 32 Comm: ksoftirqd/3 Tainted: G OE 6.2.0-rc5+ #51
[ 256.345218] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019
[ 256.355807] RIP: 0010:ice_clean_rx_irq_zc+0x9c/0x7d0 [ice]
[ 256.361423] Code: b7 8f 8a 00 00 00 66 39 ca 0f 84 f1 04 00 00 49 8b 47 40 4c 8b 24 d0 41 0f b7 45 04 66 25 ff 3f 66 89 04 24 0f 84 85 02 00 00 <49> 8b 44 24 18 0f b7 14 24 48 05 00 01 00 00 49 89 04 24 49 89 44
[ 256.380463] RSP: 0018:ffffc900088bfd20 EFLAGS: 00010206
[ 256.385765] RAX: 000000000000003c RBX: 0000000000000035 RCX: 000000000000067f
[ 256.393012] RDX: 0000000000000775 RSI: 0000000000000000 RDI: ffff8881deb3ac80
[ 256.400256] RBP: 000000000000003c R08: ffff889847982710 R09: 0000000000010000
[ 256.407500] R10: ffffffff82c060c0 R11: 0000000000000004 R12: 0000000000000000
[ 256.414746] R13: ffff88811165eea0 R14: ffffc9000d255000 R15: ffff888119b37600
[ 256.421990] FS: 0000000000000000(0000) GS:ffff8897e0cc0000(0000) knlGS:0000000000000000
[ 256.430207] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 256.436036] CR2: 0000000000000018 CR3: 0000000005c0a006 CR4: 00000000007706e0
[ 256.443283] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 256.450527] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 256.457770] PKRU: 55555554
[ 256.460529] Call Trace:
[ 256.463015] <TASK>
[ 256.465157] ? ice_xmit_zc+0x6e/0x150 [ice]
[ 256.469437] ice_napi_poll+0x46d/0x680 [ice]
[ 256.473815] ? _raw_spin_unlock_irqrestore+0x1b/0x40
[ 256.478863] __napi_poll+0x29/0x160
[ 256.482409] net_rx_action+0x136/0x260
[ 256.486222] __do_softirq+0xe8/0x2e5
[ 256.489853] ? smpboot_thread_fn+0x2c/0x270
[ 256.494108] run_ksoftirqd+0x2a/0x50
[ 256.497747] smpboot_thread_fn+0x1c1/0x270
[ 256.501907] ? __pfx_smpboot_thread_fn+0x10/0x10
[ 256.506594] kthread+0xea/0x120
[ 256.509785] ? __pfx_kthread+0x10/0x10
[ 256.513597] ret_from_fork+0x29/0x50
[ 256.517238] </TASK>
In fact, irqs were not disabled and napi managed to be scheduled and run
while xsk_pool pointer was still valid, but SW ring of xdp_buff pointers
was already freed.
To fix this, call ice_qvec_dis_irq() after ice_vsi_stop_tx_ring(). Also
while at it, remove redundant ice_clean_rx_ring() call - this is handled
in ice_qp_clean_rings(). |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: restore bond's IFF_SLAVE flag if a non-eth dev enslave fails
syzbot reported a warning[1] where the bond device itself is a slave and
we try to enslave a non-ethernet device as the first slave which fails
but then in the error path when ether_setup() restores the bond device
it also clears all flags. In my previous fix[2] I restored the
IFF_MASTER flag, but I didn't consider the case that the bond device
itself might also be a slave with IFF_SLAVE set, so we need to restore
that flag as well. Use the bond_ether_setup helper which does the right
thing and restores the bond's flags properly.
Steps to reproduce using a nlmon dev:
$ ip l add nlmon0 type nlmon
$ ip l add bond1 type bond
$ ip l add bond2 type bond
$ ip l set bond1 master bond2
$ ip l set dev nlmon0 master bond1
$ ip -d l sh dev bond1
22: bond1: <BROADCAST,MULTICAST,MASTER> mtu 1500 qdisc noqueue master bond2 state DOWN mode DEFAULT group default qlen 1000
(now bond1's IFF_SLAVE flag is gone and we'll hit a warning[3] if we
try to delete it)
[1] https://syzkaller.appspot.com/bug?id=391c7b1f6522182899efba27d891f1743e8eb3ef
[2] commit 7d5cd2ce5292 ("bonding: correctly handle bonding type change on enslave failure")
[3] example warning:
[ 27.008664] bond1: (slave nlmon0): The slave device specified does not support setting the MAC address
[ 27.008692] bond1: (slave nlmon0): Error -95 calling set_mac_address
[ 32.464639] bond1 (unregistering): Released all slaves
[ 32.464685] ------------[ cut here ]------------
[ 32.464686] WARNING: CPU: 1 PID: 2004 at net/core/dev.c:10829 unregister_netdevice_many+0x72a/0x780
[ 32.464694] Modules linked in: br_netfilter bridge bonding virtio_net
[ 32.464699] CPU: 1 PID: 2004 Comm: ip Kdump: loaded Not tainted 5.18.0-rc3+ #47
[ 32.464703] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.1-2.fc37 04/01/2014
[ 32.464704] RIP: 0010:unregister_netdevice_many+0x72a/0x780
[ 32.464707] Code: 99 fd ff ff ba 90 1a 00 00 48 c7 c6 f4 02 66 96 48 c7 c7 20 4d 35 96 c6 05 fa c7 2b 02 01 e8 be 6f 4a 00 0f 0b e9 73 fd ff ff <0f> 0b e9 5f fd ff ff 80 3d e3 c7 2b 02 00 0f 85 3b fd ff ff ba 59
[ 32.464710] RSP: 0018:ffffa006422d7820 EFLAGS: 00010206
[ 32.464712] RAX: ffff8f6e077140a0 RBX: ffffa006422d7888 RCX: 0000000000000000
[ 32.464714] RDX: ffff8f6e12edbe58 RSI: 0000000000000296 RDI: ffffffff96d4a520
[ 32.464716] RBP: ffff8f6e07714000 R08: ffffffff96d63600 R09: ffffa006422d7728
[ 32.464717] R10: 0000000000000ec0 R11: ffffffff9698c988 R12: ffff8f6e12edb140
[ 32.464719] R13: dead000000000122 R14: dead000000000100 R15: ffff8f6e12edb140
[ 32.464723] FS: 00007f297c2f1740(0000) GS:ffff8f6e5d900000(0000) knlGS:0000000000000000
[ 32.464725] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 32.464726] CR2: 00007f297bf1c800 CR3: 00000000115e8000 CR4: 0000000000350ee0
[ 32.464730] Call Trace:
[ 32.464763] <TASK>
[ 32.464767] rtnl_dellink+0x13e/0x380
[ 32.464776] ? cred_has_capability.isra.0+0x68/0x100
[ 32.464780] ? __rtnl_unlock+0x33/0x60
[ 32.464783] ? bpf_lsm_capset+0x10/0x10
[ 32.464786] ? security_capable+0x36/0x50
[ 32.464790] rtnetlink_rcv_msg+0x14e/0x3b0
[ 32.464792] ? _copy_to_iter+0xb1/0x790
[ 32.464796] ? post_alloc_hook+0xa0/0x160
[ 32.464799] ? rtnl_calcit.isra.0+0x110/0x110
[ 32.464802] netlink_rcv_skb+0x50/0xf0
[ 32.464806] netlink_unicast+0x216/0x340
[ 32.464809] netlink_sendmsg+0x23f/0x480
[ 32.464812] sock_sendmsg+0x5e/0x60
[ 32.464815] ____sys_sendmsg+0x22c/0x270
[ 32.464818] ? import_iovec+0x17/0x20
[ 32.464821] ? sendmsg_copy_msghdr+0x59/0x90
[ 32.464823] ? do_set_pte+0xa0/0xe0
[ 32.464828] ___sys_sendmsg+0x81/0xc0
[ 32.464832] ? mod_objcg_state+0xc6/0x300
[ 32.464835] ? refill_obj_stock+0xa9/0x160
[ 32.464838] ? memcg_slab_free_hook+0x1a5/0x1f0
[ 32.464842] __sys_sendm
---truncated--- |
| Mantis Bug Tracker (MantisBT) is an open source issue tracker. In versions 2.27.1 and below, due to insufficient access-level checks, any non-admin user with access to manage_config_columns_page.php can use the Copy From action to retrieve the columns configuration from a private project they have no access to. This issue is fixed in version 2.27.2. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix cleanup null-ptr deref on encap lock
During module is unloaded while a peer tc flow is still offloaded,
first the peer uplink rep profile is changed to a nic profile, and so
neigh encap lock is destroyed. Next during unload, the VF reps netdevs
are unregistered which causes the original non-peer tc flow to be deleted,
which deletes the peer flow. The peer flow deletion detaches the encap
entry and try to take the already destroyed encap lock, causing the
below trace.
Fix this by clearing peer flows during tc eswitch cleanup
(mlx5e_tc_esw_cleanup()).
Relevant trace:
[ 4316.837128] BUG: kernel NULL pointer dereference, address: 00000000000001d8
[ 4316.842239] RIP: 0010:__mutex_lock+0xb5/0xc40
[ 4316.851897] Call Trace:
[ 4316.852481] <TASK>
[ 4316.857214] mlx5e_rep_neigh_entry_release+0x93/0x790 [mlx5_core]
[ 4316.858258] mlx5e_rep_encap_entry_detach+0xa7/0xf0 [mlx5_core]
[ 4316.859134] mlx5e_encap_dealloc+0xa3/0xf0 [mlx5_core]
[ 4316.859867] clean_encap_dests.part.0+0x5c/0xe0 [mlx5_core]
[ 4316.860605] mlx5e_tc_del_fdb_flow+0x32a/0x810 [mlx5_core]
[ 4316.862609] __mlx5e_tc_del_fdb_peer_flow+0x1a2/0x250 [mlx5_core]
[ 4316.863394] mlx5e_tc_del_flow+0x(/0x630 [mlx5_core]
[ 4316.864090] mlx5e_flow_put+0x5f/0x100 [mlx5_core]
[ 4316.864771] mlx5e_delete_flower+0x4de/0xa40 [mlx5_core]
[ 4316.865486] tc_setup_cb_reoffload+0x20/0x80
[ 4316.865905] fl_reoffload+0x47c/0x510 [cls_flower]
[ 4316.869181] tcf_block_playback_offloads+0x91/0x1d0
[ 4316.869649] tcf_block_unbind+0xe7/0x1b0
[ 4316.870049] tcf_block_offload_cmd.isra.0+0x1ee/0x270
[ 4316.879266] tcf_block_offload_unbind+0x61/0xa0
[ 4316.879711] __tcf_block_put+0xa4/0x310 |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: st-nci: Fix use after free bug in ndlc_remove due to race condition
This bug influences both st_nci_i2c_remove and st_nci_spi_remove.
Take st_nci_i2c_remove as an example.
In st_nci_i2c_probe, it called ndlc_probe and bound &ndlc->sm_work
with llt_ndlc_sm_work.
When it calls ndlc_recv or timeout handler, it will finally call
schedule_work to start the work.
When we call st_nci_i2c_remove to remove the driver, there
may be a sequence as follows:
Fix it by finishing the work before cleanup in ndlc_remove
CPU0 CPU1
|llt_ndlc_sm_work
st_nci_i2c_remove |
ndlc_remove |
st_nci_remove |
nci_free_device|
kfree(ndev) |
//free ndlc->ndev |
|llt_ndlc_rcv_queue
|nci_recv_frame
|//use ndlc->ndev |