Search

Search Results (327883 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68803 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: NFSD: NFSv4 file creation neglects setting ACL An NFSv4 client that sets an ACL with a named principal during file creation retrieves the ACL afterwards, and finds that it is only a default ACL (based on the mode bits) and not the ACL that was requested during file creation. This violates RFC 8881 section 6.4.1.3: "the ACL attribute is set as given". The issue occurs in nfsd_create_setattr(), which calls nfsd_attrs_valid() to determine whether to call nfsd_setattr(). However, nfsd_attrs_valid() checks only for iattr changes and security labels, but not POSIX ACLs. When only an ACL is present, the function returns false, nfsd_setattr() is skipped, and the POSIX ACL is never applied to the inode. Subsequently, when the client retrieves the ACL, the server finds no POSIX ACL on the inode and returns one generated from the file's mode bits rather than returning the originally-specified ACL.
CVE-2025-68798 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf/x86/amd: Check event before enable to avoid GPF On AMD machines cpuc->events[idx] can become NULL in a subtle race condition with NMI->throttle->x86_pmu_stop(). Check event for NULL in amd_pmu_enable_all() before enable to avoid a GPF. This appears to be an AMD only issue. Syzkaller reported a GPF in amd_pmu_enable_all. INFO: NMI handler (perf_event_nmi_handler) took too long to run: 13.143 msecs Oops: general protection fault, probably for non-canonical address 0xdffffc0000000034: 0000 PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x00000000000001a0-0x00000000000001a7] CPU: 0 UID: 0 PID: 328415 Comm: repro_36674776 Not tainted 6.12.0-rc1-syzk RIP: 0010:x86_pmu_enable_event (arch/x86/events/perf_event.h:1195 arch/x86/events/core.c:1430) RSP: 0018:ffff888118009d60 EFLAGS: 00010012 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000034 RSI: 0000000000000000 RDI: 00000000000001a0 RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002 R13: ffff88811802a440 R14: ffff88811802a240 R15: ffff8881132d8601 FS: 00007f097dfaa700(0000) GS:ffff888118000000(0000) GS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000200001c0 CR3: 0000000103d56000 CR4: 00000000000006f0 Call Trace: <IRQ> amd_pmu_enable_all (arch/x86/events/amd/core.c:760 (discriminator 2)) x86_pmu_enable (arch/x86/events/core.c:1360) event_sched_out (kernel/events/core.c:1191 kernel/events/core.c:1186 kernel/events/core.c:2346) __perf_remove_from_context (kernel/events/core.c:2435) event_function (kernel/events/core.c:259) remote_function (kernel/events/core.c:92 (discriminator 1) kernel/events/core.c:72 (discriminator 1)) __flush_smp_call_function_queue (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./include/trace/events/csd.h:64 kernel/smp.c:135 kernel/smp.c:540) __sysvec_call_function_single (./arch/x86/include/asm/jump_label.h:27 ./include/linux/jump_label.h:207 ./arch/x86/include/asm/trace/irq_vectors.h:99 arch/x86/kernel/smp.c:272) sysvec_call_function_single (arch/x86/kernel/smp.c:266 (discriminator 47) arch/x86/kernel/smp.c:266 (discriminator 47)) </IRQ>
CVE-2025-68793 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix a job->pasid access race in gpu recovery Avoid a possible UAF in GPU recovery due to a race between the sched timeout callback and the tdr work queue. The gpu recovery function calls drm_sched_stop() and later drm_sched_start(). drm_sched_start() restarts the tdr queue which will eventually free the job. If the tdr queue frees the job before time out callback completes, the job will be freed and we'll get a UAF when accessing the pasid. Cache it early to avoid the UAF. Example KASAN trace: [ 493.058141] BUG: KASAN: slab-use-after-free in amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.067530] Read of size 4 at addr ffff88b0ce3f794c by task kworker/u128:1/323 [ 493.074892] [ 493.076485] CPU: 9 UID: 0 PID: 323 Comm: kworker/u128:1 Tainted: G E 6.16.0-1289896.2.zuul.bf4f11df81c1410bbe901c4373305a31 #1 PREEMPT(voluntary) [ 493.076493] Tainted: [E]=UNSIGNED_MODULE [ 493.076495] Hardware name: TYAN B8021G88V2HR-2T/S8021GM2NR-2T, BIOS V1.03.B10 04/01/2019 [ 493.076500] Workqueue: amdgpu-reset-dev drm_sched_job_timedout [gpu_sched] [ 493.076512] Call Trace: [ 493.076515] <TASK> [ 493.076518] dump_stack_lvl+0x64/0x80 [ 493.076529] print_report+0xce/0x630 [ 493.076536] ? _raw_spin_lock_irqsave+0x86/0xd0 [ 493.076541] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 493.076545] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077253] kasan_report+0xb8/0xf0 [ 493.077258] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077965] amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.078672] ? __pfx_amdgpu_device_gpu_recover+0x10/0x10 [amdgpu] [ 493.079378] ? amdgpu_coredump+0x1fd/0x4c0 [amdgpu] [ 493.080111] amdgpu_job_timedout+0x642/0x1400 [amdgpu] [ 493.080903] ? pick_task_fair+0x24e/0x330 [ 493.080910] ? __pfx_amdgpu_job_timedout+0x10/0x10 [amdgpu] [ 493.081702] ? _raw_spin_lock+0x75/0xc0 [ 493.081708] ? __pfx__raw_spin_lock+0x10/0x10 [ 493.081712] drm_sched_job_timedout+0x1b0/0x4b0 [gpu_sched] [ 493.081721] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081725] process_one_work+0x679/0xff0 [ 493.081732] worker_thread+0x6ce/0xfd0 [ 493.081736] ? __pfx_worker_thread+0x10/0x10 [ 493.081739] kthread+0x376/0x730 [ 493.081744] ? __pfx_kthread+0x10/0x10 [ 493.081748] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081751] ? __pfx_kthread+0x10/0x10 [ 493.081755] ret_from_fork+0x247/0x330 [ 493.081761] ? __pfx_kthread+0x10/0x10 [ 493.081764] ret_from_fork_asm+0x1a/0x30 [ 493.081771] </TASK> (cherry picked from commit 20880a3fd5dd7bca1a079534cf6596bda92e107d)
CVE-2025-68787 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: netrom: Fix memory leak in nr_sendmsg() syzbot reported a memory leak [1]. When function sock_alloc_send_skb() return NULL in nr_output(), the original skb is not freed, which was allocated in nr_sendmsg(). Fix this by freeing it before return. [1] BUG: memory leak unreferenced object 0xffff888129f35500 (size 240): comm "syz.0.17", pid 6119, jiffies 4294944652 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 10 52 28 81 88 ff ff ..........R(.... backtrace (crc 1456a3e4): kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline] slab_post_alloc_hook mm/slub.c:4983 [inline] slab_alloc_node mm/slub.c:5288 [inline] kmem_cache_alloc_node_noprof+0x36f/0x5e0 mm/slub.c:5340 __alloc_skb+0x203/0x240 net/core/skbuff.c:660 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0x69/0x3f0 net/core/skbuff.c:6671 sock_alloc_send_pskb+0x379/0x3e0 net/core/sock.c:2965 sock_alloc_send_skb include/net/sock.h:1859 [inline] nr_sendmsg+0x287/0x450 net/netrom/af_netrom.c:1105 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg net/socket.c:742 [inline] sock_write_iter+0x293/0x2a0 net/socket.c:1195 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x45d/0x710 fs/read_write.c:686 ksys_write+0x143/0x170 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xa4/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2025-68780 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/deadline: only set free_cpus for online runqueues Commit 16b269436b72 ("sched/deadline: Modify cpudl::free_cpus to reflect rd->online") introduced the cpudl_set/clear_freecpu functions to allow the cpu_dl::free_cpus mask to be manipulated by the deadline scheduler class rq_on/offline callbacks so the mask would also reflect this state. Commit 9659e1eeee28 ("sched/deadline: Remove cpu_active_mask from cpudl_find()") removed the check of the cpu_active_mask to save some processing on the premise that the cpudl::free_cpus mask already reflected the runqueue online state. Unfortunately, there are cases where it is possible for the cpudl_clear function to set the free_cpus bit for a CPU when the deadline runqueue is offline. When this occurs while a CPU is connected to the default root domain the flag may retain the bad state after the CPU has been unplugged. Later, a different CPU that is transitioning through the default root domain may push a deadline task to the powered down CPU when cpudl_find sees its free_cpus bit is set. If this happens the task will not have the opportunity to run. One example is outlined here: https://lore.kernel.org/lkml/20250110233010.2339521-1-opendmb@gmail.com Another occurs when the last deadline task is migrated from a CPU that has an offlined runqueue. The dequeue_task member of the deadline scheduler class will eventually call cpudl_clear and set the free_cpus bit for the CPU. This commit modifies the cpudl_clear function to be aware of the online state of the deadline runqueue so that the free_cpus mask can be updated appropriately. It is no longer necessary to manage the mask outside of the cpudl_set/clear functions so the cpudl_set/clear_freecpu functions are removed. In addition, since the free_cpus mask is now only updated under the cpudl lock the code was changed to use the non-atomic __cpumask functions.
CVE-2025-68779 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Avoid unregistering PSP twice PSP is unregistered twice in: _mlx5e_remove -> mlx5e_psp_unregister mlx5e_nic_cleanup -> mlx5e_psp_unregister This leads to a refcount underflow in some conditions: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 2 PID: 1694 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0 [...] mlx5e_psp_unregister+0x26/0x50 [mlx5_core] mlx5e_nic_cleanup+0x26/0x90 [mlx5_core] mlx5e_remove+0xe6/0x1f0 [mlx5_core] auxiliary_bus_remove+0x18/0x30 device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 mlx5_rescan_drivers_locked+0xbc/0x2a0 [mlx5_core] [...] Do not directly remove psp from the _mlx5e_remove path, the PSP cleanup happens as part of profile cleanup.
CVE-2025-68772 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid updating compression context during writeback Bai, Shuangpeng <sjb7183@psu.edu> reported a bug as below: Oops: divide error: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 11441 Comm: syz.0.46 Not tainted 6.17.0 #1 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:f2fs_all_cluster_page_ready+0x106/0x550 fs/f2fs/compress.c:857 Call Trace: <TASK> f2fs_write_cache_pages fs/f2fs/data.c:3078 [inline] __f2fs_write_data_pages fs/f2fs/data.c:3290 [inline] f2fs_write_data_pages+0x1c19/0x3600 fs/f2fs/data.c:3317 do_writepages+0x38e/0x640 mm/page-writeback.c:2634 filemap_fdatawrite_wbc mm/filemap.c:386 [inline] __filemap_fdatawrite_range mm/filemap.c:419 [inline] file_write_and_wait_range+0x2ba/0x3e0 mm/filemap.c:794 f2fs_do_sync_file+0x6e6/0x1b00 fs/f2fs/file.c:294 generic_write_sync include/linux/fs.h:3043 [inline] f2fs_file_write_iter+0x76e/0x2700 fs/f2fs/file.c:5259 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x7e9/0xe00 fs/read_write.c:686 ksys_write+0x19d/0x2d0 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf7/0x470 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f The bug was triggered w/ below race condition: fsync setattr ioctl - f2fs_do_sync_file - file_write_and_wait_range - f2fs_write_cache_pages : inode is non-compressed : cc.cluster_size = F2FS_I(inode)->i_cluster_size = 0 - tag_pages_for_writeback - f2fs_setattr - truncate_setsize - f2fs_truncate - f2fs_fileattr_set - f2fs_setflags_common - set_compress_context : F2FS_I(inode)->i_cluster_size = 4 : set_inode_flag(inode, FI_COMPRESSED_FILE) - f2fs_compressed_file : return true - f2fs_all_cluster_page_ready : "pgidx % cc->cluster_size" trigger dividing 0 issue Let's change as below to fix this issue: - introduce a new atomic type variable .writeback in structure f2fs_inode_info to track the number of threads which calling f2fs_write_cache_pages(). - use .i_sem lock to protect .writeback update. - check .writeback before update compression context in f2fs_setflags_common() to avoid race w/ ->writepages.
CVE-2025-68769 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix return value of f2fs_recover_fsync_data() With below scripts, it will trigger panic in f2fs: mkfs.f2fs -f /dev/vdd mount /dev/vdd /mnt/f2fs touch /mnt/f2fs/foo sync echo 111 >> /mnt/f2fs/foo f2fs_io fsync /mnt/f2fs/foo f2fs_io shutdown 2 /mnt/f2fs umount /mnt/f2fs mount -o ro,norecovery /dev/vdd /mnt/f2fs or mount -o ro,disable_roll_forward /dev/vdd /mnt/f2fs F2FS-fs (vdd): f2fs_recover_fsync_data: recovery fsync data, check_only: 0 F2FS-fs (vdd): Mounted with checkpoint version = 7f5c361f F2FS-fs (vdd): Stopped filesystem due to reason: 0 F2FS-fs (vdd): f2fs_recover_fsync_data: recovery fsync data, check_only: 1 Filesystem f2fs get_tree() didn't set fc->root, returned 1 ------------[ cut here ]------------ kernel BUG at fs/super.c:1761! Oops: invalid opcode: 0000 [#1] SMP PTI CPU: 3 UID: 0 PID: 722 Comm: mount Not tainted 6.18.0-rc2+ #721 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:vfs_get_tree.cold+0x18/0x1a Call Trace: <TASK> fc_mount+0x13/0xa0 path_mount+0x34e/0xc50 __x64_sys_mount+0x121/0x150 do_syscall_64+0x84/0x800 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fa6cc126cfe The root cause is we missed to handle error number returned from f2fs_recover_fsync_data() when mounting image w/ ro,norecovery or ro,disable_roll_forward mount option, result in returning a positive error number to vfs_get_tree(), fix it.
CVE-2025-68768 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: inet: frags: flush pending skbs in fqdir_pre_exit() We have been seeing occasional deadlocks on pernet_ops_rwsem since September in NIPA. The stuck task was usually modprobe (often loading a driver like ipvlan), trying to take the lock as a Writer. lockdep does not track readers for rwsems so the read wasn't obvious from the reports. On closer inspection the Reader holding the lock was conntrack looping forever in nf_conntrack_cleanup_net_list(). Based on past experience with occasional NIPA crashes I looked thru the tests which run before the crash and noticed that the crash follows ip_defrag.sh. An immediate red flag. Scouring thru (de)fragmentation queues reveals skbs sitting around, holding conntrack references. The problem is that since conntrack depends on nf_defrag_ipv6, nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its netns exit hooks run _after_ conntrack's netns exit hook. Flush all fragment queue SKBs during fqdir_pre_exit() to release conntrack references before conntrack cleanup runs. Also flush the queues in timer expiry handlers when they discover fqdir->dead is set, in case packet sneaks in while we're running the pre_exit flush. The commit under Fixes is not exactly the culprit, but I think previously the timer firing would eventually unblock the spinning conntrack.
CVE-2026-0684 2 Codepeople, Wordpress 2 Cp Image Store With Slideshow, Wordpress 2026-01-14 4.3 Medium
The CP Image Store with Slideshow plugin for WordPress is vulnerable to authorization bypass in all versions up to, and including, 1.1.9 due to a logic error in the 'cpis_admin_init' function's permission check. This makes it possible for authenticated attackers, with Contributor-level access and above, to import arbitrary products via XML, if the XML file has already been uploaded to the server.
CVE-2026-0404 1 Netgear 12 Rbr750, Rbr840, Rbr850 and 9 more 2026-01-14 N/A
An insufficient input validation vulnerability in NETGEAR Orbi devices' DHCPv6 functionality allows network adjacent attackers authenticated over WiFi or on LAN to execute OS command injections on the router. DHCPv6 is not enabled by default.
CVE-2026-0403 1 Netgear 10 Rbe970, Rbe971, Rbr750 and 7 more 2026-01-14 N/A
An insufficient input validation vulnerability in NETGEAR Orbi routers allows attackers connected to the router's LAN to execute OS command injections.
CVE-2025-71098 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ip6_gre: make ip6gre_header() robust Over the years, syzbot found many ways to crash the kernel in ip6gre_header() [1]. This involves team or bonding drivers ability to dynamically change their dev->needed_headroom and/or dev->hard_header_len In this particular crash mld_newpack() allocated an skb with a too small reserve/headroom, and by the time mld_sendpack() was called, syzbot managed to attach an ip6gre device. [1] skbuff: skb_under_panic: text:ffffffff8a1d69a8 len:136 put:40 head:ffff888059bc7000 data:ffff888059bc6fe8 tail:0x70 end:0x6c0 dev:team0 ------------[ cut here ]------------ kernel BUG at net/core/skbuff.c:213 ! <TASK> skb_under_panic net/core/skbuff.c:223 [inline] skb_push+0xc3/0xe0 net/core/skbuff.c:2641 ip6gre_header+0xc8/0x790 net/ipv6/ip6_gre.c:1371 dev_hard_header include/linux/netdevice.h:3436 [inline] neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618 neigh_output include/net/neighbour.h:556 [inline] ip6_finish_output2+0xfb3/0x1480 net/ipv6/ip6_output.c:136 __ip6_finish_output net/ipv6/ip6_output.c:-1 [inline] ip6_finish_output+0x234/0x7d0 net/ipv6/ip6_output.c:220 NF_HOOK_COND include/linux/netfilter.h:307 [inline] ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247 NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318 mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855 mld_send_cr net/ipv6/mcast.c:2154 [inline] mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693
CVE-2025-71096 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/core: Check for the presence of LS_NLA_TYPE_DGID correctly The netlink response for RDMA_NL_LS_OP_IP_RESOLVE should always have a LS_NLA_TYPE_DGID attribute, it is invalid if it does not. Use the nl parsing logic properly and call nla_parse_deprecated() to fill the nlattrs array and then directly index that array to get the data for the DGID. Just fail if it is NULL. Remove the for loop searching for the nla, and squash the validation and parsing into one function. Fixes an uninitialized read from the stack triggered by userspace if it does not provide the DGID to a kernel initiated RDMA_NL_LS_OP_IP_RESOLVE query. BUG: KMSAN: uninit-value in hex_byte_pack include/linux/hex.h:13 [inline] BUG: KMSAN: uninit-value in ip6_string+0xef4/0x13a0 lib/vsprintf.c:1490 hex_byte_pack include/linux/hex.h:13 [inline] ip6_string+0xef4/0x13a0 lib/vsprintf.c:1490 ip6_addr_string+0x18a/0x3e0 lib/vsprintf.c:1509 ip_addr_string+0x245/0xee0 lib/vsprintf.c:1633 pointer+0xc09/0x1bd0 lib/vsprintf.c:2542 vsnprintf+0xf8a/0x1bd0 lib/vsprintf.c:2930 vprintk_store+0x3ae/0x1530 kernel/printk/printk.c:2279 vprintk_emit+0x307/0xcd0 kernel/printk/printk.c:2426 vprintk_default+0x3f/0x50 kernel/printk/printk.c:2465 vprintk+0x36/0x50 kernel/printk/printk_safe.c:82 _printk+0x17e/0x1b0 kernel/printk/printk.c:2475 ib_nl_process_good_ip_rsep drivers/infiniband/core/addr.c:128 [inline] ib_nl_handle_ip_res_resp+0x963/0x9d0 drivers/infiniband/core/addr.c:141 rdma_nl_rcv_msg drivers/infiniband/core/netlink.c:-1 [inline] rdma_nl_rcv_skb drivers/infiniband/core/netlink.c:239 [inline] rdma_nl_rcv+0xefa/0x11c0 drivers/infiniband/core/netlink.c:259 netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline] netlink_unicast+0xf04/0x12b0 net/netlink/af_netlink.c:1346 netlink_sendmsg+0x10b3/0x1250 net/netlink/af_netlink.c:1896 sock_sendmsg_nosec net/socket.c:714 [inline] __sock_sendmsg+0x333/0x3d0 net/socket.c:729 ____sys_sendmsg+0x7e0/0xd80 net/socket.c:2617 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2671 __sys_sendmsg+0x1aa/0x300 net/socket.c:2703 __compat_sys_sendmsg net/compat.c:346 [inline] __do_compat_sys_sendmsg net/compat.c:353 [inline] __se_compat_sys_sendmsg net/compat.c:350 [inline] __ia32_compat_sys_sendmsg+0xa4/0x100 net/compat.c:350 ia32_sys_call+0x3f6c/0x4310 arch/x86/include/generated/asm/syscalls_32.h:371 do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline] __do_fast_syscall_32+0xb0/0x150 arch/x86/entry/syscall_32.c:306 do_fast_syscall_32+0x38/0x80 arch/x86/entry/syscall_32.c:331 do_SYSENTER_32+0x1f/0x30 arch/x86/entry/syscall_32.c:3
CVE-2025-71095 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix the crash issue for zero copy XDP_TX action There is a crash issue when running zero copy XDP_TX action, the crash log is shown below. [ 216.122464] Unable to handle kernel paging request at virtual address fffeffff80000000 [ 216.187524] Internal error: Oops: 0000000096000144 [#1] SMP [ 216.301694] Call trace: [ 216.304130] dcache_clean_poc+0x20/0x38 (P) [ 216.308308] __dma_sync_single_for_device+0x1bc/0x1e0 [ 216.313351] stmmac_xdp_xmit_xdpf+0x354/0x400 [ 216.317701] __stmmac_xdp_run_prog+0x164/0x368 [ 216.322139] stmmac_napi_poll_rxtx+0xba8/0xf00 [ 216.326576] __napi_poll+0x40/0x218 [ 216.408054] Kernel panic - not syncing: Oops: Fatal exception in interrupt For XDP_TX action, the xdp_buff is converted to xdp_frame by xdp_convert_buff_to_frame(). The memory type of the resulting xdp_frame depends on the memory type of the xdp_buff. For page pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_POOL. For zero copy XSK pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_ORDER0. However, stmmac_xdp_xmit_back() does not check the memory type and always uses the page pool type, this leads to invalid mappings and causes the crash. Therefore, check the xdp_buff memory type in stmmac_xdp_xmit_back() to fix this issue.
CVE-2025-71073 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: lkkbd - disable pending work before freeing device lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work handler lkkbd_reinit() dereferences the lkkbd structure and its serio/input_dev fields. lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd structure without preventing the reinit work from being queued again until serio_close() returns. This can allow the work handler to run after the structure has been freed, leading to a potential use-after-free. Use disable_work_sync() instead of cancel_work_sync() to ensure the reinit work cannot be re-queued, and call it both in lkkbd_disconnect() and in lkkbd_connect() error paths after serio_open().
CVE-2025-9427 2 Lemonsoft, Wordpress 2 Wordpress Add-on, Wordpress 2026-01-14 N/A
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Lemonsoft WordPress add on allows Cross-Site Scripting (XSS).This issue affects WordPress add on: 2025.7.1.
CVE-2025-71090 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg() nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if the client already has a SHARE_ACCESS_READ open from a previous OPEN operation, this action overwrites the existing pointer without releasing its reference, orphaning the previous reference. Additionally, the function originally stored the same nfsd_file pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with only a single reference. When put_deleg_file() runs, it clears fi_rdeleg_file and calls nfs4_file_put_access() to release the file. However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when the fi_access[O_RDONLY] counter drops to zero. If another READ open exists on the file, the counter remains elevated and the nfsd_file reference from the delegation is never released. This potentially causes open conflicts on that file. Then, on server shutdown, these leaks cause __nfsd_file_cache_purge() to encounter files with an elevated reference count that cannot be cleaned up, ultimately triggering a BUG() in kmem_cache_destroy() because there are still nfsd_file objects allocated in that cache.
CVE-2025-71085 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: BUG() in pskb_expand_head() as part of calipso_skbuff_setattr() There exists a kernel oops caused by a BUG_ON(nhead < 0) at net/core/skbuff.c:2232 in pskb_expand_head(). This bug is triggered as part of the calipso_skbuff_setattr() routine when skb_cow() is passed headroom > INT_MAX (i.e. (int)(skb_headroom(skb) + len_delta) < 0). The root cause of the bug is due to an implicit integer cast in __skb_cow(). The check (headroom > skb_headroom(skb)) is meant to ensure that delta = headroom - skb_headroom(skb) is never negative, otherwise we will trigger a BUG_ON in pskb_expand_head(). However, if headroom > INT_MAX and delta <= -NET_SKB_PAD, the check passes, delta becomes negative, and pskb_expand_head() is passed a negative value for nhead. Fix the trigger condition in calipso_skbuff_setattr(). Avoid passing "negative" headroom sizes to skb_cow() within calipso_skbuff_setattr() by only using skb_cow() to grow headroom. PoC: Using `netlabelctl` tool: netlabelctl map del default netlabelctl calipso add pass doi:7 netlabelctl map add default address:0::1/128 protocol:calipso,7 Then run the following PoC: int fd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP); // setup msghdr int cmsg_size = 2; int cmsg_len = 0x60; struct msghdr msg; struct sockaddr_in6 dest_addr; struct cmsghdr * cmsg = (struct cmsghdr *) calloc(1, sizeof(struct cmsghdr) + cmsg_len); msg.msg_name = &dest_addr; msg.msg_namelen = sizeof(dest_addr); msg.msg_iov = NULL; msg.msg_iovlen = 0; msg.msg_control = cmsg; msg.msg_controllen = cmsg_len; msg.msg_flags = 0; // setup sockaddr dest_addr.sin6_family = AF_INET6; dest_addr.sin6_port = htons(31337); dest_addr.sin6_flowinfo = htonl(31337); dest_addr.sin6_addr = in6addr_loopback; dest_addr.sin6_scope_id = 31337; // setup cmsghdr cmsg->cmsg_len = cmsg_len; cmsg->cmsg_level = IPPROTO_IPV6; cmsg->cmsg_type = IPV6_HOPOPTS; char * hop_hdr = (char *)cmsg + sizeof(struct cmsghdr); hop_hdr[1] = 0x9; //set hop size - (0x9 + 1) * 8 = 80 sendmsg(fd, &msg, 0);
CVE-2025-69992 1 Phpgurukul 1 News Portal Project 2026-01-14 9.8 Critical
phpgurukul News Portal Project V4.1 has File Upload Vulnerability via upload.php, which enables the upload of files of any format to the server without identity authentication.