| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Fix NULL dereference on XCOPY completion
CPU affinity control added with commit 39ae3edda325 ("scsi: target: core:
Make completion affinity configurable") makes target_complete_cmd() queue
work on a CPU based on se_tpg->se_tpg_wwn->cmd_compl_affinity state.
LIO's EXTENDED COPY worker is a special case in that read/write cmds are
dispatched using the global xcopy_pt_tpg, which carries a NULL se_tpg_wwn
pointer following initialization in target_xcopy_setup_pt().
The NULL xcopy_pt_tpg->se_tpg_wwn pointer is dereferenced on completion of
any EXTENDED COPY initiated read/write cmds. E.g using the libiscsi
SCSI.ExtendedCopy.Simple test:
BUG: kernel NULL pointer dereference, address: 00000000000001a8
RIP: 0010:target_complete_cmd+0x9d/0x130 [target_core_mod]
Call Trace:
fd_execute_rw+0x148/0x42a [target_core_file]
? __dynamic_pr_debug+0xa7/0xe0
? target_check_reservation+0x5b/0x940 [target_core_mod]
__target_execute_cmd+0x1e/0x90 [target_core_mod]
transport_generic_new_cmd+0x17c/0x330 [target_core_mod]
target_xcopy_issue_pt_cmd+0x9/0x60 [target_core_mod]
target_xcopy_read_source.isra.7+0x10b/0x1b0 [target_core_mod]
? target_check_fua+0x40/0x40 [target_core_mod]
? transport_complete_task_attr+0x130/0x130 [target_core_mod]
target_xcopy_do_work+0x61f/0xc00 [target_core_mod]
This fix makes target_complete_cmd() queue work on se_cmd->cpuid if
se_tpg_wwn is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ngene: Fix out-of-bounds bug in ngene_command_config_free_buf()
Fix an 11-year old bug in ngene_command_config_free_buf() while
addressing the following warnings caught with -Warray-bounds:
arch/alpha/include/asm/string.h:22:16: warning: '__builtin_memcpy' offset [12, 16] from the object at 'com' is out of the bounds of referenced subobject 'config' with type 'unsigned char' at offset 10 [-Warray-bounds]
arch/x86/include/asm/string_32.h:182:25: warning: '__builtin_memcpy' offset [12, 16] from the object at 'com' is out of the bounds of referenced subobject 'config' with type 'unsigned char' at offset 10 [-Warray-bounds]
The problem is that the original code is trying to copy 6 bytes of
data into a one-byte size member _config_ of the wrong structue
FW_CONFIGURE_BUFFERS, in a single call to memcpy(). This causes a
legitimate compiler warning because memcpy() overruns the length
of &com.cmd.ConfigureBuffers.config. It seems that the right
structure is FW_CONFIGURE_FREE_BUFFERS, instead, because it contains
6 more members apart from the header _hdr_. Also, the name of
the function ngene_command_config_free_buf() suggests that the actual
intention is to ConfigureFreeBuffers, instead of ConfigureBuffers
(which takes place in the function ngene_command_config_buf(), above).
Fix this by enclosing those 6 members of struct FW_CONFIGURE_FREE_BUFFERS
into new struct config, and use &com.cmd.ConfigureFreeBuffers.config as
the destination address, instead of &com.cmd.ConfigureBuffers.config,
when calling memcpy().
This also helps with the ongoing efforts to globally enable
-Warray-bounds and get us closer to being able to tighten the
FORTIFY_SOURCE routines on memcpy(). |
| In the Linux kernel, the following vulnerability has been resolved:
driver core: auxiliary bus: Fix memory leak when driver_register() fail
If driver_register() returns with error we need to free the memory
allocated for auxdrv->driver.name before returning from
__auxiliary_driver_register() |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: core: Validate channel ID when processing command completions
MHI reads the channel ID from the event ring element sent by the
device which can be any value between 0 and 255. In order to
prevent any out of bound accesses, add a check against the maximum
number of channels supported by the controller and those channels
not configured yet so as to skip processing of that event ring
element. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: bcm2835: Fix out-of-bounds access with more than 4 slaves
Commit 571e31fa60b3 ("spi: bcm2835: Cache CS register value for
->prepare_message()") limited the number of slaves to 3 at compile-time.
The limitation was necessitated by a statically-sized array prepare_cs[]
in the driver private data which contains a per-slave register value.
The commit sought to enforce the limitation at run-time by setting the
controller's num_chipselect to 3: Slaves with a higher chipselect are
rejected by spi_add_device().
However the commit neglected that num_chipselect only limits the number
of *native* chipselects. If GPIO chipselects are specified in the
device tree for more than 3 slaves, num_chipselect is silently raised by
of_spi_get_gpio_numbers() and the result are out-of-bounds accesses to
the statically-sized array prepare_cs[].
As a bandaid fix which is backportable to stable, raise the number of
allowed slaves to 24 (which "ought to be enough for anybody"), enforce
the limitation on slave ->setup and revert num_chipselect to 3 (which is
the number of native chipselects supported by the controller).
An upcoming for-next commit will allow an arbitrary number of slaves. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: misc: brcmstb-usb-pinmap: check return value after calling platform_get_resource()
It will cause null-ptr-deref if platform_get_resource() returns NULL,
we need check the return value. |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: pci_generic: Fix possible use-after-free in mhi_pci_remove()
This driver's remove path calls del_timer(). However, that function
does not wait until the timer handler finishes. This means that the
timer handler may still be running after the driver's remove function
has finished, which would result in a use-after-free.
Fix by calling del_timer_sync(), which makes sure the timer handler
has finished, and unable to re-schedule itself. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Do not blindly read the ip address in ftrace_bug()
It was reported that a bug on arm64 caused a bad ip address to be used for
updating into a nop in ftrace_init(), but the error path (rightfully)
returned -EINVAL and not -EFAULT, as the bug caused more than one error to
occur. But because -EINVAL was returned, the ftrace_bug() tried to report
what was at the location of the ip address, and read it directly. This
caused the machine to panic, as the ip was not pointing to a valid memory
address.
Instead, read the ip address with copy_from_kernel_nofault() to safely
access the memory, and if it faults, report that the address faulted,
otherwise report what was in that location. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Correct the length check which causes memory corruption
We've suffered from severe kernel crashes due to memory corruption on
our production environment, like,
Call Trace:
[1640542.554277] general protection fault: 0000 [#1] SMP PTI
[1640542.554856] CPU: 17 PID: 26996 Comm: python Kdump: loaded Tainted:G
[1640542.556629] RIP: 0010:kmem_cache_alloc+0x90/0x190
[1640542.559074] RSP: 0018:ffffb16faa597df8 EFLAGS: 00010286
[1640542.559587] RAX: 0000000000000000 RBX: 0000000000400200 RCX:
0000000006e931bf
[1640542.560323] RDX: 0000000006e931be RSI: 0000000000400200 RDI:
ffff9a45ff004300
[1640542.560996] RBP: 0000000000400200 R08: 0000000000023420 R09:
0000000000000000
[1640542.561670] R10: 0000000000000000 R11: 0000000000000000 R12:
ffffffff9a20608d
[1640542.562366] R13: ffff9a45ff004300 R14: ffff9a45ff004300 R15:
696c662f65636976
[1640542.563128] FS: 00007f45d7c6f740(0000) GS:ffff9a45ff840000(0000)
knlGS:0000000000000000
[1640542.563937] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1640542.564557] CR2: 00007f45d71311a0 CR3: 000000189d63e004 CR4:
00000000003606e0
[1640542.565279] DR0: 0000000000000000 DR1: 0000000000000000 DR2:
0000000000000000
[1640542.566069] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400
[1640542.566742] Call Trace:
[1640542.567009] anon_vma_clone+0x5d/0x170
[1640542.567417] __split_vma+0x91/0x1a0
[1640542.567777] do_munmap+0x2c6/0x320
[1640542.568128] vm_munmap+0x54/0x70
[1640542.569990] __x64_sys_munmap+0x22/0x30
[1640542.572005] do_syscall_64+0x5b/0x1b0
[1640542.573724] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[1640542.575642] RIP: 0033:0x7f45d6e61e27
James Wang has reproduced it stably on the latest 4.19 LTS.
After some debugging, we finally proved that it's due to ftrace
buffer out-of-bound access using a debug tool as follows:
[ 86.775200] BUG: Out-of-bounds write at addr 0xffff88aefe8b7000
[ 86.780806] no_context+0xdf/0x3c0
[ 86.784327] __do_page_fault+0x252/0x470
[ 86.788367] do_page_fault+0x32/0x140
[ 86.792145] page_fault+0x1e/0x30
[ 86.795576] strncpy_from_unsafe+0x66/0xb0
[ 86.799789] fetch_memory_string+0x25/0x40
[ 86.804002] fetch_deref_string+0x51/0x60
[ 86.808134] kprobe_trace_func+0x32d/0x3a0
[ 86.812347] kprobe_dispatcher+0x45/0x50
[ 86.816385] kprobe_ftrace_handler+0x90/0xf0
[ 86.820779] ftrace_ops_assist_func+0xa1/0x140
[ 86.825340] 0xffffffffc00750bf
[ 86.828603] do_sys_open+0x5/0x1f0
[ 86.832124] do_syscall_64+0x5b/0x1b0
[ 86.835900] entry_SYSCALL_64_after_hwframe+0x44/0xa9
commit b220c049d519 ("tracing: Check length before giving out
the filter buffer") adds length check to protect trace data
overflow introduced in 0fc1b09ff1ff, seems that this fix can't prevent
overflow entirely, the length check should also take the sizeof
entry->array[0] into account, since this array[0] is filled the
length of trace data and occupy addtional space and risk overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3-meson-g12a: fix usb2 PHY glue init when phy0 is disabled
When only PHY1 is used (for example on Odroid-HC4), the regmap init code
uses the usb2 ports when doesn't initialize the PHY1 regmap entry.
This fixes:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000020
...
pc : regmap_update_bits_base+0x40/0xa0
lr : dwc3_meson_g12a_usb2_init_phy+0x4c/0xf8
...
Call trace:
regmap_update_bits_base+0x40/0xa0
dwc3_meson_g12a_usb2_init_phy+0x4c/0xf8
dwc3_meson_g12a_usb2_init+0x7c/0xc8
dwc3_meson_g12a_usb_init+0x28/0x48
dwc3_meson_g12a_probe+0x298/0x540
platform_probe+0x70/0xe0
really_probe+0xf0/0x4d8
driver_probe_device+0xfc/0x168
... |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: gadget: Bail from dwc3_gadget_exit() if dwc->gadget is NULL
There exists a possible scenario in which dwc3_gadget_init() can fail:
during during host -> peripheral mode switch in dwc3_set_mode(), and
a pending gadget driver fails to bind. Then, if the DRD undergoes
another mode switch from peripheral->host the resulting
dwc3_gadget_exit() will attempt to reference an invalid and dangling
dwc->gadget pointer as well as call dma_free_coherent() on unmapped
DMA pointers.
The exact scenario can be reproduced as follows:
- Start DWC3 in peripheral mode
- Configure ConfigFS gadget with FunctionFS instance (or use g_ffs)
- Run FunctionFS userspace application (open EPs, write descriptors, etc)
- Bind gadget driver to DWC3's UDC
- Switch DWC3 to host mode
=> dwc3_gadget_exit() is called. usb_del_gadget() will put the
ConfigFS driver instance on the gadget_driver_pending_list
- Stop FunctionFS application (closes the ep files)
- Switch DWC3 to peripheral mode
=> dwc3_gadget_init() fails as usb_add_gadget() calls
check_pending_gadget_drivers() and attempts to rebind the UDC
to the ConfigFS gadget but fails with -19 (-ENODEV) because the
FFS instance is not in FFS_ACTIVE state (userspace has not
re-opened and written the descriptors yet, i.e. desc_ready!=0).
- Switch DWC3 back to host mode
=> dwc3_gadget_exit() is called again, but this time dwc->gadget
is invalid.
Although it can be argued that userspace should take responsibility
for ensuring that the FunctionFS application be ready prior to
allowing the composite driver bind to the UDC, failure to do so
should not result in a panic from the kernel driver.
Fix this by setting dwc->gadget to NULL in the failure path of
dwc3_gadget_init() and add a check to dwc3_gadget_exit() to bail out
unless the gadget pointer is valid. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdnsp: Fix deadlock issue in cdnsp_thread_irq_handler
Patch fixes the following critical issue caused by deadlock which has been
detected during testing NCM class:
smp: csd: Detected non-responsive CSD lock (#1) on CPU#0
smp: csd: CSD lock (#1) unresponsive.
....
RIP: 0010:native_queued_spin_lock_slowpath+0x61/0x1d0
RSP: 0018:ffffbc494011cde0 EFLAGS: 00000002
RAX: 0000000000000101 RBX: ffff9ee8116b4a68 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff9ee8116b4658
RBP: ffffbc494011cde0 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658
R13: ffff9ee8116b4670 R14: 0000000000000246 R15: ffff9ee8116b4658
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7bcc41a830 CR3: 000000007a612003 CR4: 00000000001706e0
Call Trace:
<IRQ>
do_raw_spin_lock+0xc0/0xd0
_raw_spin_lock_irqsave+0x95/0xa0
cdnsp_gadget_ep_queue.cold+0x88/0x107 [cdnsp_udc_pci]
usb_ep_queue+0x35/0x110
eth_start_xmit+0x220/0x3d0 [u_ether]
ncm_tx_timeout+0x34/0x40 [usb_f_ncm]
? ncm_free_inst+0x50/0x50 [usb_f_ncm]
__hrtimer_run_queues+0xac/0x440
hrtimer_run_softirq+0x8c/0xb0
__do_softirq+0xcf/0x428
asm_call_irq_on_stack+0x12/0x20
</IRQ>
do_softirq_own_stack+0x61/0x70
irq_exit_rcu+0xc1/0xd0
sysvec_apic_timer_interrupt+0x52/0xb0
asm_sysvec_apic_timer_interrupt+0x12/0x20
RIP: 0010:do_raw_spin_trylock+0x18/0x40
RSP: 0018:ffffbc494138bda8 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffff9ee8116b4658 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9ee8116b4658
RBP: ffffbc494138bda8 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658
R13: ffff9ee8116b4670 R14: ffff9ee7b5c73d80 R15: ffff9ee8116b4000
_raw_spin_lock+0x3d/0x70
? cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci]
cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci]
? cdnsp_remove_request+0x1f0/0x1f0 [cdnsp_udc_pci]
? cdnsp_thread_irq_handler+0x5/0xa0 [cdnsp_udc_pci]
? irq_thread+0xa0/0x1c0
irq_thread_fn+0x28/0x60
irq_thread+0x105/0x1c0
? __kthread_parkme+0x42/0x90
? irq_forced_thread_fn+0x90/0x90
? wake_threads_waitq+0x30/0x30
? irq_thread_check_affinity+0xe0/0xe0
kthread+0x12a/0x160
? kthread_park+0x90/0x90
ret_from_fork+0x22/0x30
The root cause of issue is spin_lock/spin_unlock instruction instead
spin_lock_irqsave/spin_lock_irqrestore in cdnsp_thread_irq_handler
function. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: fix various gadgets null ptr deref on 10gbps cabling.
This avoids a null pointer dereference in
f_{ecm,eem,hid,loopback,printer,rndis,serial,sourcesink,subset,tcm}
by simply reusing the 5gbps config for 10gbps. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: tcpm: cancel vdm and state machine hrtimer when unregister tcpm port
A pending hrtimer may expire after the kthread_worker of tcpm port
is destroyed, see below kernel dump when do module unload, fix it
by cancel the 2 hrtimers.
[ 111.517018] Unable to handle kernel paging request at virtual address ffff8000118cb880
[ 111.518786] blk_update_request: I/O error, dev sda, sector 60061185 op 0x0:(READ) flags 0x0 phys_seg 1 prio class 0
[ 111.526594] Mem abort info:
[ 111.526597] ESR = 0x96000047
[ 111.526600] EC = 0x25: DABT (current EL), IL = 32 bits
[ 111.526604] SET = 0, FnV = 0
[ 111.526607] EA = 0, S1PTW = 0
[ 111.526610] Data abort info:
[ 111.526612] ISV = 0, ISS = 0x00000047
[ 111.526615] CM = 0, WnR = 1
[ 111.526619] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000041d75000
[ 111.526623] [ffff8000118cb880] pgd=10000001bffff003, p4d=10000001bffff003, pud=10000001bfffe003, pmd=10000001bfffa003, pte=0000000000000000
[ 111.526642] Internal error: Oops: 96000047 [#1] PREEMPT SMP
[ 111.526647] Modules linked in: dwc3_imx8mp dwc3 phy_fsl_imx8mq_usb [last unloaded: tcpci]
[ 111.526663] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.13.0-rc4-00927-gebbe9dbd802c-dirty #36
[ 111.526670] Hardware name: NXP i.MX8MPlus EVK board (DT)
[ 111.526674] pstate: 800000c5 (Nzcv daIF -PAN -UAO -TCO BTYPE=--)
[ 111.526681] pc : queued_spin_lock_slowpath+0x1a0/0x390
[ 111.526695] lr : _raw_spin_lock_irqsave+0x88/0xb4
[ 111.526703] sp : ffff800010003e20
[ 111.526706] x29: ffff800010003e20 x28: ffff00017f380180
[ 111.537156] buffer_io_error: 6 callbacks suppressed
[ 111.537162] Buffer I/O error on dev sda1, logical block 60040704, async page read
[ 111.539932] x27: ffff00017f3801c0
[ 111.539938] x26: ffff800010ba2490 x25: 0000000000000000 x24: 0000000000000001
[ 111.543025] blk_update_request: I/O error, dev sda, sector 60061186 op 0x0:(READ) flags 0x0 phys_seg 7 prio class 0
[ 111.548304]
[ 111.548306] x23: 00000000000000c0 x22: ffff0000c2a9f184 x21: ffff00017f380180
[ 111.551374] Buffer I/O error on dev sda1, logical block 60040705, async page read
[ 111.554499]
[ 111.554503] x20: ffff0000c5f14210 x19: 00000000000000c0 x18: 0000000000000000
[ 111.557391] Buffer I/O error on dev sda1, logical block 60040706, async page read
[ 111.561218]
[ 111.561222] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 111.564205] Buffer I/O error on dev sda1, logical block 60040707, async page read
[ 111.570887] x14: 00000000000000f5 x13: 0000000000000001 x12: 0000000000000040
[ 111.570902] x11: ffff0000c05ac6d8
[ 111.583420] Buffer I/O error on dev sda1, logical block 60040708, async page read
[ 111.588978] x10: 0000000000000000 x9 : 0000000000040000
[ 111.588988] x8 : 0000000000000000
[ 111.597173] Buffer I/O error on dev sda1, logical block 60040709, async page read
[ 111.605766] x7 : ffff00017f384880 x6 : ffff8000118cb880
[ 111.605777] x5 : ffff00017f384880
[ 111.611094] Buffer I/O error on dev sda1, logical block 60040710, async page read
[ 111.617086] x4 : 0000000000000000 x3 : ffff0000c2a9f184
[ 111.617096] x2 : ffff8000118cb880
[ 111.622242] Buffer I/O error on dev sda1, logical block 60040711, async page read
[ 111.626927] x1 : ffff8000118cb880 x0 : ffff00017f384888
[ 111.626938] Call trace:
[ 111.626942] queued_spin_lock_slowpath+0x1a0/0x390
[ 111.795809] kthread_queue_work+0x30/0xc0
[ 111.799828] state_machine_timer_handler+0x20/0x30
[ 111.804624] __hrtimer_run_queues+0x140/0x1e0
[ 111.808990] hrtimer_interrupt+0xec/0x2c0
[ 111.813004] arch_timer_handler_phys+0x38/0x50
[ 111.817456] handle_percpu_devid_irq+0x88/0x150
[ 111.821991] __handle_domain_irq+0x80/0xe0
[ 111.826093] gic_handle_irq+0xc0/0x140
[ 111.829848] el1_irq+0xbc/0x154
[ 111.832991] arch_cpu_idle+0x1c/0x2c
[ 111.836572] default_idle_call+0x24/0x6c
[ 111.840497] do_idle+0x238/0x2ac
[ 1
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA: Verify port when creating flow rule
Validate port value provided by the user and with that remove no longer
needed validation by the driver. The missing check in the mlx5_ib driver
could cause to the below oops.
Call trace:
_create_flow_rule+0x2d4/0xf28 [mlx5_ib]
mlx5_ib_create_flow+0x2d0/0x5b0 [mlx5_ib]
ib_uverbs_ex_create_flow+0x4cc/0x624 [ib_uverbs]
ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0xd4/0x150 [ib_uverbs]
ib_uverbs_cmd_verbs.isra.7+0xb28/0xc50 [ib_uverbs]
ib_uverbs_ioctl+0x158/0x1d0 [ib_uverbs]
do_vfs_ioctl+0xd0/0xaf0
ksys_ioctl+0x84/0xb4
__arm64_sys_ioctl+0x28/0xc4
el0_svc_common.constprop.3+0xa4/0x254
el0_svc_handler+0x84/0xa0
el0_svc+0x10/0x26c
Code: b9401260 f9615681 51000400 8b001c20 (f9403c1a) |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: core: Fix Null-point-dereference in fmt_single_name()
Check the return value of devm_kstrdup() in case of
Null-point-dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: wcd934x: Fix shift-out-of-bounds error
bit-mask for pins 0 to 4 is BIT(0) to BIT(4) however we ended up with BIT(n - 1)
which is not right, and this was caught by below usban check
UBSAN: shift-out-of-bounds in drivers/gpio/gpio-wcd934x.c:34:14 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Ensure liveliness of nested VM-Enter fail tracepoint message
Use the __string() machinery provided by the tracing subystem to make a
copy of the string literals consumed by the "nested VM-Enter failed"
tracepoint. A complete copy is necessary to ensure that the tracepoint
can't outlive the data/memory it consumes and deference stale memory.
Because the tracepoint itself is defined by kvm, if kvm-intel and/or
kvm-amd are built as modules, the memory holding the string literals
defined by the vendor modules will be freed when the module is unloaded,
whereas the tracepoint and its data in the ring buffer will live until
kvm is unloaded (or "indefinitely" if kvm is built-in).
This bug has existed since the tracepoint was added, but was recently
exposed by a new check in tracing to detect exactly this type of bug.
fmt: '%s%s
' current_buffer: ' vmx_dirty_log_t-140127 [003] .... kvm_nested_vmenter_failed: '
WARNING: CPU: 3 PID: 140134 at kernel/trace/trace.c:3759 trace_check_vprintf+0x3be/0x3e0
CPU: 3 PID: 140134 Comm: less Not tainted 5.13.0-rc1-ce2e73ce600a-req #184
Hardware name: ASUS Q87M-E/Q87M-E, BIOS 1102 03/03/2014
RIP: 0010:trace_check_vprintf+0x3be/0x3e0
Code: <0f> 0b 44 8b 4c 24 1c e9 a9 fe ff ff c6 44 02 ff 00 49 8b 97 b0 20
RSP: 0018:ffffa895cc37bcb0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffa895cc37bd08 RCX: 0000000000000027
RDX: 0000000000000027 RSI: 00000000ffffdfff RDI: ffff9766cfad74f8
RBP: ffffffffc0a041d4 R08: ffff9766cfad74f0 R09: ffffa895cc37bad8
R10: 0000000000000001 R11: 0000000000000001 R12: ffffffffc0a041d4
R13: ffffffffc0f4dba8 R14: 0000000000000000 R15: ffff976409f2c000
FS: 00007f92fa200740(0000) GS:ffff9766cfac0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000559bd11b0000 CR3: 000000019fbaa002 CR4: 00000000001726e0
Call Trace:
trace_event_printf+0x5e/0x80
trace_raw_output_kvm_nested_vmenter_failed+0x3a/0x60 [kvm]
print_trace_line+0x1dd/0x4e0
s_show+0x45/0x150
seq_read_iter+0x2d5/0x4c0
seq_read+0x106/0x150
vfs_read+0x98/0x180
ksys_read+0x5f/0xe0
do_syscall_64+0x40/0xb0
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
IB/mlx5: Fix initializing CQ fragments buffer
The function init_cq_frag_buf() can be called to initialize the current CQ
fragments buffer cq->buf, or the temporary cq->resize_buf that is filled
during CQ resize operation.
However, the offending commit started to use function get_cqe() for
getting the CQEs, the issue with this change is that get_cqe() always
returns CQEs from cq->buf, which leads us to initialize the wrong buffer,
and in case of enlarging the CQ we try to access elements beyond the size
of the current cq->buf and eventually hit a kernel panic.
[exception RIP: init_cq_frag_buf+103]
[ffff9f799ddcbcd8] mlx5_ib_resize_cq at ffffffffc0835d60 [mlx5_ib]
[ffff9f799ddcbdb0] ib_resize_cq at ffffffffc05270df [ib_core]
[ffff9f799ddcbdc0] llt_rdma_setup_qp at ffffffffc0a6a712 [llt]
[ffff9f799ddcbe10] llt_rdma_cc_event_action at ffffffffc0a6b411 [llt]
[ffff9f799ddcbe98] llt_rdma_client_conn_thread at ffffffffc0a6bb75 [llt]
[ffff9f799ddcbec8] kthread at ffffffffa66c5da1
[ffff9f799ddcbf50] ret_from_fork_nospec_begin at ffffffffa6d95ddd
Fix it by getting the needed CQE by calling mlx5_frag_buf_get_wqe() that
takes the correct source buffer as a parameter. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix a potential NULL dereference in nfs_get_client()
None of the callers are expecting NULL returns from nfs_get_client() so
this code will lead to an Oops. It's better to return an error
pointer. I expect that this is dead code so hopefully no one is
affected. |