| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mt76: mt7915: fix NULL pointer dereference in mt7915_get_phy_mode
Fix the following NULL pointer dereference in mt7915_get_phy_mode
routine adding an ibss interface to the mt7915 driver.
[ 101.137097] wlan0: Trigger new scan to find an IBSS to join
[ 102.827039] wlan0: Creating new IBSS network, BSSID 26:a4:50:1a:6e:69
[ 103.064756] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
[ 103.073670] Mem abort info:
[ 103.076520] ESR = 0x96000005
[ 103.079614] EC = 0x25: DABT (current EL), IL = 32 bits
[ 103.084934] SET = 0, FnV = 0
[ 103.088042] EA = 0, S1PTW = 0
[ 103.091215] Data abort info:
[ 103.094104] ISV = 0, ISS = 0x00000005
[ 103.098041] CM = 0, WnR = 0
[ 103.101044] user pgtable: 4k pages, 39-bit VAs, pgdp=00000000460b1000
[ 103.107565] [0000000000000000] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
[ 103.116590] Internal error: Oops: 96000005 [#1] SMP
[ 103.189066] CPU: 1 PID: 333 Comm: kworker/u4:3 Not tainted 5.10.75 #0
[ 103.195498] Hardware name: MediaTek MT7622 RFB1 board (DT)
[ 103.201124] Workqueue: phy0 ieee80211_iface_work [mac80211]
[ 103.206695] pstate: 20000005 (nzCv daif -PAN -UAO -TCO BTYPE=--)
[ 103.212705] pc : mt7915_get_phy_mode+0x68/0x120 [mt7915e]
[ 103.218103] lr : mt7915_mcu_add_bss_info+0x11c/0x760 [mt7915e]
[ 103.223927] sp : ffffffc011cdb9e0
[ 103.227235] x29: ffffffc011cdb9e0 x28: ffffff8006563098
[ 103.232545] x27: ffffff8005f4da22 x26: ffffff800685ac40
[ 103.237855] x25: 0000000000000001 x24: 000000000000011f
[ 103.243165] x23: ffffff8005f4e260 x22: ffffff8006567918
[ 103.248475] x21: ffffff8005f4df80 x20: ffffff800685ac58
[ 103.253785] x19: ffffff8006744400 x18: 0000000000000000
[ 103.259094] x17: 0000000000000000 x16: 0000000000000001
[ 103.264403] x15: 000899c3a2d9d2e4 x14: 000899bdc3c3a1c8
[ 103.269713] x13: 0000000000000000 x12: 0000000000000000
[ 103.275024] x11: ffffffc010e30c20 x10: 0000000000000000
[ 103.280333] x9 : 0000000000000050 x8 : ffffff8006567d88
[ 103.285642] x7 : ffffff8006563b5c x6 : ffffff8006563b44
[ 103.290952] x5 : 0000000000000002 x4 : 0000000000000001
[ 103.296262] x3 : 0000000000000001 x2 : 0000000000000001
[ 103.301572] x1 : 0000000000000000 x0 : 0000000000000011
[ 103.306882] Call trace:
[ 103.309328] mt7915_get_phy_mode+0x68/0x120 [mt7915e]
[ 103.314378] mt7915_bss_info_changed+0x198/0x200 [mt7915e]
[ 103.319941] ieee80211_bss_info_change_notify+0x128/0x290 [mac80211]
[ 103.326360] __ieee80211_sta_join_ibss+0x308/0x6c4 [mac80211]
[ 103.332171] ieee80211_sta_create_ibss+0x8c/0x10c [mac80211]
[ 103.337895] ieee80211_ibss_work+0x3dc/0x614 [mac80211]
[ 103.343185] ieee80211_iface_work+0x388/0x3f0 [mac80211]
[ 103.348495] process_one_work+0x288/0x690
[ 103.352499] worker_thread+0x70/0x464
[ 103.356157] kthread+0x144/0x150
[ 103.359380] ret_from_fork+0x10/0x18
[ 103.362952] Code: 394008c3 52800220 394000e4 7100007f (39400023) |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Fix a memleak bug in rvu_mbox_init()
In rvu_mbox_init(), mbox_regions is not freed or passed out
under the switch-default region, which could lead to a memory leak.
Fix this bug by changing 'return err' to 'goto free_regions'.
This bug was found by a static analyzer. The analysis employs
differential checking to identify inconsistent security operations
(e.g., checks or kfrees) between two code paths and confirms that the
inconsistent operations are not recovered in the current function or
the callers, so they constitute bugs.
Note that, as a bug found by static analysis, it can be a false
positive or hard to trigger. Multiple researchers have cross-reviewed
the bug.
Builds with CONFIG_OCTEONTX2_AF=y show no new warnings,
and our static analyzer no longer warns about this code. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/a6xx: Allocate enough space for GMU registers
In commit 142639a52a01 ("drm/msm/a6xx: fix crashstate capture for
A650") we changed a6xx_get_gmu_registers() to read 3 sets of
registers. Unfortunately, we didn't change the memory allocation for
the array. That leads to a KASAN warning (this was on the chromeos-5.4
kernel, which has the problematic commit backported to it):
BUG: KASAN: slab-out-of-bounds in _a6xx_get_gmu_registers+0x144/0x430
Write of size 8 at addr ffffff80c89432b0 by task A618-worker/209
CPU: 5 PID: 209 Comm: A618-worker Tainted: G W 5.4.156-lockdep #22
Hardware name: Google Lazor Limozeen without Touchscreen (rev5 - rev8) (DT)
Call trace:
dump_backtrace+0x0/0x248
show_stack+0x20/0x2c
dump_stack+0x128/0x1ec
print_address_description+0x88/0x4a0
__kasan_report+0xfc/0x120
kasan_report+0x10/0x18
__asan_report_store8_noabort+0x1c/0x24
_a6xx_get_gmu_registers+0x144/0x430
a6xx_gpu_state_get+0x330/0x25d4
msm_gpu_crashstate_capture+0xa0/0x84c
recover_worker+0x328/0x838
kthread_worker_fn+0x32c/0x574
kthread+0x2dc/0x39c
ret_from_fork+0x10/0x18
Allocated by task 209:
__kasan_kmalloc+0xfc/0x1c4
kasan_kmalloc+0xc/0x14
kmem_cache_alloc_trace+0x1f0/0x2a0
a6xx_gpu_state_get+0x164/0x25d4
msm_gpu_crashstate_capture+0xa0/0x84c
recover_worker+0x328/0x838
kthread_worker_fn+0x32c/0x574
kthread+0x2dc/0x39c
ret_from_fork+0x10/0x18 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: kms: Add missing drm_crtc_commit_put
Commit 9ec03d7f1ed3 ("drm/vc4: kms: Wait on previous FIFO users before a
commit") introduced a global state for the HVS, with each FIFO storing
the current CRTC commit so that we can properly synchronize commits.
However, the refcounting was off and we thus ended up leaking the
drm_crtc_commit structure every commit. Add a drm_crtc_commit_put to
prevent the leakage. |
| In the Linux kernel, the following vulnerability has been resolved:
iwlwifi: Fix memory leaks in error handling path
Should an error occur (invalid TLV len or memory allocation failure), the
memory already allocated in 'reduce_power_data' should be freed before
returning, otherwise it is leaking. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdnsp: Fix a NULL pointer dereference in cdnsp_endpoint_init()
In cdnsp_endpoint_init(), cdnsp_ring_alloc() is assigned to pep->ring
and there is a dereference of it in cdnsp_endpoint_init(), which could
lead to a NULL pointer dereference on failure of cdnsp_ring_alloc().
Fix this bug by adding a check of pep->ring.
This bug was found by a static analyzer. The analysis employs
differential checking to identify inconsistent security operations
(e.g., checks or kfrees) between two code paths and confirms that the
inconsistent operations are not recovered in the current function or
the callers, so they constitute bugs.
Note that, as a bug found by static analysis, it can be a false
positive or hard to trigger. Multiple researchers have cross-reviewed
the bug.
Builds with CONFIG_USB_CDNSP_GADGET=y show no new warnings,
and our static analyzer no longer warns about this code. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: liteuart: Fix NULL pointer dereference in ->remove()
drvdata has to be set in _probe() - otherwise platform_get_drvdata()
causes null pointer dereference BUG in _remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
serial: liteuart: fix use-after-free and memleak on unbind
Deregister the port when unbinding the driver to prevent it from being
used after releasing the driver data and leaking memory allocated by
serial core. |
| In the Linux kernel, the following vulnerability has been resolved:
can: sja1000: fix use after free in ems_pcmcia_add_card()
If the last channel is not available then "dev" is freed. Fortunately,
we can just use "pdev->irq" instead.
Also we should check if at least one channel was set up. |
| In the Linux kernel, the following vulnerability has been resolved:
can: pch_can: pch_can_rx_normal: fix use after free
After calling netif_receive_skb(skb), dereferencing skb is unsafe.
Especially, the can_frame cf which aliases skb memory is dereferenced
just after the call netif_receive_skb(skb).
Reordering the lines solves the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
can: m_can: m_can_read_fifo: fix memory leak in error branch
In m_can_read_fifo(), if the second call to m_can_fifo_read() fails,
the function jump to the out_fail label and returns without calling
m_can_receive_skb(). This means that the skb previously allocated by
alloc_can_skb() is not freed. In other terms, this is a memory leak.
This patch adds a goto label to destroy the skb if an error occurs.
Issue was found with GCC -fanalyzer, please follow the link below for
details. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: fix potential NULL pointer deref in nfc_genl_dump_ses_done
The done() netlink callback nfc_genl_dump_ses_done() should check if
received argument is non-NULL, because its allocation could fail earlier
in dumpit() (nfc_genl_dump_ses()). |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: do not perform operations on net devices being unregistered
There is a short period between a net device starts to be unregistered
and when it is actually gone. In that time frame ethtool operations
could still be performed, which might end up in unwanted or undefined
behaviours[1].
Do not allow ethtool operations after a net device starts its
unregistration. This patch targets the netlink part as the ioctl one
isn't affected: the reference to the net device is taken and the
operation is executed within an rtnl lock section and the net device
won't be found after unregister.
[1] For example adding Tx queues after unregister ends up in NULL
pointer exceptions and UaFs, such as:
BUG: KASAN: use-after-free in kobject_get+0x14/0x90
Read of size 1 at addr ffff88801961248c by task ethtool/755
CPU: 0 PID: 755 Comm: ethtool Not tainted 5.15.0-rc6+ #778
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-4.fc34 04/014
Call Trace:
dump_stack_lvl+0x57/0x72
print_address_description.constprop.0+0x1f/0x140
kasan_report.cold+0x7f/0x11b
kobject_get+0x14/0x90
kobject_add_internal+0x3d1/0x450
kobject_init_and_add+0xba/0xf0
netdev_queue_update_kobjects+0xcf/0x200
netif_set_real_num_tx_queues+0xb4/0x310
veth_set_channels+0x1c3/0x550
ethnl_set_channels+0x524/0x610 |
| In the Linux kernel, the following vulnerability has been resolved:
nfp: Fix memory leak in nfp_cpp_area_cache_add()
In line 800 (#1), nfp_cpp_area_alloc() allocates and initializes a
CPP area structure. But in line 807 (#2), when the cache is allocated
failed, this CPP area structure is not freed, which will result in
memory leak.
We can fix it by freeing the CPP area when the cache is allocated
failed (#2).
792 int nfp_cpp_area_cache_add(struct nfp_cpp *cpp, size_t size)
793 {
794 struct nfp_cpp_area_cache *cache;
795 struct nfp_cpp_area *area;
800 area = nfp_cpp_area_alloc(cpp, NFP_CPP_ID(7, NFP_CPP_ACTION_RW, 0),
801 0, size);
// #1: allocates and initializes
802 if (!area)
803 return -ENOMEM;
805 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
806 if (!cache)
807 return -ENOMEM; // #2: missing free
817 return 0;
818 } |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: fix netns refcount leak in devlink_nl_cmd_reload()
While preparing my patch series adding netns refcount tracking,
I spotted bugs in devlink_nl_cmd_reload()
Some error paths forgot to release a refcount on a netns.
To fix this, we can reduce the scope of get_net()/put_net()
section around the call to devlink_reload(). |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: fq_pie: prevent dismantle issue
For some reason, fq_pie_destroy() did not copy
working code from pie_destroy() and other qdiscs,
thus causing elusive bug.
Before calling del_timer_sync(&q->adapt_timer),
we need to ensure timer will not rearm itself.
rcu: INFO: rcu_preempt self-detected stall on CPU
rcu: 0-....: (4416 ticks this GP) idle=60d/1/0x4000000000000000 softirq=10433/10434 fqs=2579
(t=10501 jiffies g=13085 q=3989)
NMI backtrace for cpu 0
CPU: 0 PID: 13 Comm: ksoftirqd/0 Not tainted 5.16.0-rc4-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
nmi_cpu_backtrace.cold+0x47/0x144 lib/nmi_backtrace.c:111
nmi_trigger_cpumask_backtrace+0x1b3/0x230 lib/nmi_backtrace.c:62
trigger_single_cpu_backtrace include/linux/nmi.h:164 [inline]
rcu_dump_cpu_stacks+0x25e/0x3f0 kernel/rcu/tree_stall.h:343
print_cpu_stall kernel/rcu/tree_stall.h:627 [inline]
check_cpu_stall kernel/rcu/tree_stall.h:711 [inline]
rcu_pending kernel/rcu/tree.c:3878 [inline]
rcu_sched_clock_irq.cold+0x9d/0x746 kernel/rcu/tree.c:2597
update_process_times+0x16d/0x200 kernel/time/timer.c:1785
tick_sched_handle+0x9b/0x180 kernel/time/tick-sched.c:226
tick_sched_timer+0x1b0/0x2d0 kernel/time/tick-sched.c:1428
__run_hrtimer kernel/time/hrtimer.c:1685 [inline]
__hrtimer_run_queues+0x1c0/0xe50 kernel/time/hrtimer.c:1749
hrtimer_interrupt+0x31c/0x790 kernel/time/hrtimer.c:1811
local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1086 [inline]
__sysvec_apic_timer_interrupt+0x146/0x530 arch/x86/kernel/apic/apic.c:1103
sysvec_apic_timer_interrupt+0x8e/0xc0 arch/x86/kernel/apic/apic.c:1097
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20 arch/x86/include/asm/idtentry.h:638
RIP: 0010:write_comp_data kernel/kcov.c:221 [inline]
RIP: 0010:__sanitizer_cov_trace_const_cmp1+0x1d/0x80 kernel/kcov.c:273
Code: 54 c8 20 48 89 10 c3 66 0f 1f 44 00 00 53 41 89 fb 41 89 f1 bf 03 00 00 00 65 48 8b 0c 25 40 70 02 00 48 89 ce 4c 8b 54 24 08 <e8> 4e f7 ff ff 84 c0 74 51 48 8b 81 88 15 00 00 44 8b 81 84 15 00
RSP: 0018:ffffc90000d27b28 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffff888064bf1bf0 RCX: ffff888011928000
RDX: ffff888011928000 RSI: ffff888011928000 RDI: 0000000000000003
RBP: ffff888064bf1c28 R08: 0000000000000000 R09: 0000000000000000
R10: ffffffff875d8295 R11: 0000000000000000 R12: 0000000000000000
R13: ffff8880783dd300 R14: 0000000000000000 R15: 0000000000000000
pie_calculate_probability+0x405/0x7c0 net/sched/sch_pie.c:418
fq_pie_timer+0x170/0x2a0 net/sched/sch_fq_pie.c:383
call_timer_fn+0x1a5/0x6b0 kernel/time/timer.c:1421
expire_timers kernel/time/timer.c:1466 [inline]
__run_timers.part.0+0x675/0xa20 kernel/time/timer.c:1734
__run_timers kernel/time/timer.c:1715 [inline]
run_timer_softirq+0xb3/0x1d0 kernel/time/timer.c:1747
__do_softirq+0x29b/0x9c2 kernel/softirq.c:558
run_ksoftirqd kernel/softirq.c:921 [inline]
run_ksoftirqd+0x2d/0x60 kernel/softirq.c:913
smpboot_thread_fn+0x645/0x9c0 kernel/smpboot.c:164
kthread+0x405/0x4f0 kernel/kthread.c:327
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
aio: fix use-after-free due to missing POLLFREE handling
signalfd_poll() and binder_poll() are special in that they use a
waitqueue whose lifetime is the current task, rather than the struct
file as is normally the case. This is okay for blocking polls, since a
blocking poll occurs within one task; however, non-blocking polls
require another solution. This solution is for the queue to be cleared
before it is freed, by sending a POLLFREE notification to all waiters.
Unfortunately, only eventpoll handles POLLFREE. A second type of
non-blocking poll, aio poll, was added in kernel v4.18, and it doesn't
handle POLLFREE. This allows a use-after-free to occur if a signalfd or
binder fd is polled with aio poll, and the waitqueue gets freed.
Fix this by making aio poll handle POLLFREE.
A patch by Ramji Jiyani <ramjiyani@google.com>
(https://lore.kernel.org/r/20211027011834.2497484-1-ramjiyani@google.com)
tried to do this by making aio_poll_wake() always complete the request
inline if POLLFREE is seen. However, that solution had two bugs.
First, it introduced a deadlock, as it unconditionally locked the aio
context while holding the waitqueue lock, which inverts the normal
locking order. Second, it didn't consider that POLLFREE notifications
are missed while the request has been temporarily de-queued.
The second problem was solved by my previous patch. This patch then
properly fixes the use-after-free by handling POLLFREE in a
deadlock-free way. It does this by taking advantage of the fact that
freeing of the waitqueue is RCU-delayed, similar to what eventpoll does. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: pm80xx: Do not call scsi_remove_host() in pm8001_alloc()
Calling scsi_remove_host() before scsi_add_host() results in a crash:
BUG: kernel NULL pointer dereference, address: 0000000000000108
RIP: 0010:device_del+0x63/0x440
Call Trace:
device_unregister+0x17/0x60
scsi_remove_host+0xee/0x2a0
pm8001_pci_probe+0x6ef/0x1b90 [pm80xx]
local_pci_probe+0x3f/0x90
We cannot call scsi_remove_host() in pm8001_alloc() because scsi_add_host()
has not been called yet at that point in time.
Function call tree:
pm8001_pci_probe()
|
`- pm8001_pci_alloc()
| |
| `- pm8001_alloc()
| |
| `- scsi_remove_host()
|
`- scsi_add_host() |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix NULL pointer dereference in i40e_dbg_dump_desc
When trying to dump VFs VSI RX/TX descriptors
using debugfs there was a crash
due to NULL pointer dereference in i40e_dbg_dump_desc.
Added a check to i40e_dbg_dump_desc that checks if
VSI type is correct for dumping RX/TX descriptors. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: mma8452: Fix trigger reference couting
The mma8452 driver directly assigns a trigger to the struct iio_dev. The
IIO core when done using this trigger will call `iio_trigger_put()` to drop
the reference count by 1.
Without the matching `iio_trigger_get()` in the driver the reference count
can reach 0 too early, the trigger gets freed while still in use and a
use-after-free occurs.
Fix this by getting a reference to the trigger before assigning it to the
IIO device. |