| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Sparse-Memory/vmemmap out-of-bounds fix
Offset vmemmap so that the first page of vmemmap will be mapped
to the first page of physical memory in order to ensure that
vmemmap’s bounds will be respected during
pfn_to_page()/page_to_pfn() operations.
The conversion macros will produce correct SV39/48/57 addresses
for every possible/valid DRAM_BASE inside the physical memory limits.
v2:Address Alex's comments |
| In the Linux kernel, the following vulnerability has been resolved:
gtp: fix use-after-free and null-ptr-deref in gtp_newlink()
The gtp_link_ops operations structure for the subsystem must be
registered after registering the gtp_net_ops pernet operations structure.
Syzkaller hit 'general protection fault in gtp_genl_dump_pdp' bug:
[ 1010.702740] gtp: GTP module unloaded
[ 1010.715877] general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] SMP KASAN NOPTI
[ 1010.715888] KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
[ 1010.715895] CPU: 1 PID: 128616 Comm: a.out Not tainted 6.8.0-rc6-std-def-alt1 #1
[ 1010.715899] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-alt1 04/01/2014
[ 1010.715908] RIP: 0010:gtp_newlink+0x4d7/0x9c0 [gtp]
[ 1010.715915] Code: 80 3c 02 00 0f 85 41 04 00 00 48 8b bb d8 05 00 00 e8 ed f6 ff ff 48 89 c2 48 89 c5 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 <80> 3c 02 00 0f 85 4f 04 00 00 4c 89 e2 4c 8b 6d 00 48 b8 00 00 00
[ 1010.715920] RSP: 0018:ffff888020fbf180 EFLAGS: 00010203
[ 1010.715929] RAX: dffffc0000000000 RBX: ffff88800399c000 RCX: 0000000000000000
[ 1010.715933] RDX: 0000000000000001 RSI: ffffffff84805280 RDI: 0000000000000282
[ 1010.715938] RBP: 000000000000000d R08: 0000000000000001 R09: 0000000000000000
[ 1010.715942] R10: 0000000000000001 R11: 0000000000000001 R12: ffff88800399cc80
[ 1010.715947] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000400
[ 1010.715953] FS: 00007fd1509ab5c0(0000) GS:ffff88805b300000(0000) knlGS:0000000000000000
[ 1010.715958] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1010.715962] CR2: 0000000000000000 CR3: 000000001c07a000 CR4: 0000000000750ee0
[ 1010.715968] PKRU: 55555554
[ 1010.715972] Call Trace:
[ 1010.715985] ? __die_body.cold+0x1a/0x1f
[ 1010.715995] ? die_addr+0x43/0x70
[ 1010.716002] ? exc_general_protection+0x199/0x2f0
[ 1010.716016] ? asm_exc_general_protection+0x1e/0x30
[ 1010.716026] ? gtp_newlink+0x4d7/0x9c0 [gtp]
[ 1010.716034] ? gtp_net_exit+0x150/0x150 [gtp]
[ 1010.716042] __rtnl_newlink+0x1063/0x1700
[ 1010.716051] ? rtnl_setlink+0x3c0/0x3c0
[ 1010.716063] ? is_bpf_text_address+0xc0/0x1f0
[ 1010.716070] ? kernel_text_address.part.0+0xbb/0xd0
[ 1010.716076] ? __kernel_text_address+0x56/0xa0
[ 1010.716084] ? unwind_get_return_address+0x5a/0xa0
[ 1010.716091] ? create_prof_cpu_mask+0x30/0x30
[ 1010.716098] ? arch_stack_walk+0x9e/0xf0
[ 1010.716106] ? stack_trace_save+0x91/0xd0
[ 1010.716113] ? stack_trace_consume_entry+0x170/0x170
[ 1010.716121] ? __lock_acquire+0x15c5/0x5380
[ 1010.716139] ? mark_held_locks+0x9e/0xe0
[ 1010.716148] ? kmem_cache_alloc_trace+0x35f/0x3c0
[ 1010.716155] ? __rtnl_newlink+0x1700/0x1700
[ 1010.716160] rtnl_newlink+0x69/0xa0
[ 1010.716166] rtnetlink_rcv_msg+0x43b/0xc50
[ 1010.716172] ? rtnl_fdb_dump+0x9f0/0x9f0
[ 1010.716179] ? lock_acquire+0x1fe/0x560
[ 1010.716188] ? netlink_deliver_tap+0x12f/0xd50
[ 1010.716196] netlink_rcv_skb+0x14d/0x440
[ 1010.716202] ? rtnl_fdb_dump+0x9f0/0x9f0
[ 1010.716208] ? netlink_ack+0xab0/0xab0
[ 1010.716213] ? netlink_deliver_tap+0x202/0xd50
[ 1010.716220] ? netlink_deliver_tap+0x218/0xd50
[ 1010.716226] ? __virt_addr_valid+0x30b/0x590
[ 1010.716233] netlink_unicast+0x54b/0x800
[ 1010.716240] ? netlink_attachskb+0x870/0x870
[ 1010.716248] ? __check_object_size+0x2de/0x3b0
[ 1010.716254] netlink_sendmsg+0x938/0xe40
[ 1010.716261] ? netlink_unicast+0x800/0x800
[ 1010.716269] ? __import_iovec+0x292/0x510
[ 1010.716276] ? netlink_unicast+0x800/0x800
[ 1010.716284] __sock_sendmsg+0x159/0x190
[ 1010.716290] ____sys_sendmsg+0x712/0x880
[ 1010.716297] ? sock_write_iter+0x3d0/0x3d0
[ 1010.716304] ? __ia32_sys_recvmmsg+0x270/0x270
[ 1010.716309] ? lock_acquire+0x1fe/0x560
[ 1010.716315] ? drain_array_locked+0x90/0x90
[ 1010.716324] ___sys_sendmsg+0xf8/0x170
[ 1010.716331] ? sendmsg_copy_msghdr+0x170/0x170
[ 1010.716337] ? lockdep_init_map
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: fix SoC may hang on 16 byte unaligned read
There is chip (ls1028a) errata:
The SoC may hang on 16 byte unaligned read transactions by QDMA.
Unaligned read transactions initiated by QDMA may stall in the NOC
(Network On-Chip), causing a deadlock condition. Stalled transactions will
trigger completion timeouts in PCIe controller.
Workaround:
Enable prefetch by setting the source descriptor prefetchable bit
( SD[PF] = 1 ).
Implement this workaround. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: arm64/neonbs - fix out-of-bounds access on short input
The bit-sliced implementation of AES-CTR operates on blocks of 128
bytes, and will fall back to the plain NEON version for tail blocks or
inputs that are shorter than 128 bytes to begin with.
It will call straight into the plain NEON asm helper, which performs all
memory accesses in granules of 16 bytes (the size of a NEON register).
For this reason, the associated plain NEON glue code will copy inputs
shorter than 16 bytes into a temporary buffer, given that this is a rare
occurrence and it is not worth the effort to work around this in the asm
code.
The fallback from the bit-sliced NEON version fails to take this into
account, potentially resulting in out-of-bounds accesses. So clone the
same workaround, and use a temp buffer for short in/outputs. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: fsl-qdma: init irq after reg initialization
Initialize the qDMA irqs after the registers are configured so that
interrupts that may have been pending from a primary kernel don't get
processed by the irq handler before it is ready to and cause panic with
the following trace:
Call trace:
fsl_qdma_queue_handler+0xf8/0x3e8
__handle_irq_event_percpu+0x78/0x2b0
handle_irq_event_percpu+0x1c/0x68
handle_irq_event+0x44/0x78
handle_fasteoi_irq+0xc8/0x178
generic_handle_irq+0x24/0x38
__handle_domain_irq+0x90/0x100
gic_handle_irq+0x5c/0xb8
el1_irq+0xb8/0x180
_raw_spin_unlock_irqrestore+0x14/0x40
__setup_irq+0x4bc/0x798
request_threaded_irq+0xd8/0x190
devm_request_threaded_irq+0x74/0xe8
fsl_qdma_probe+0x4d4/0xca8
platform_drv_probe+0x50/0xa0
really_probe+0xe0/0x3f8
driver_probe_device+0x64/0x130
device_driver_attach+0x6c/0x78
__driver_attach+0xbc/0x158
bus_for_each_dev+0x5c/0x98
driver_attach+0x20/0x28
bus_add_driver+0x158/0x220
driver_register+0x60/0x110
__platform_driver_register+0x44/0x50
fsl_qdma_driver_init+0x18/0x20
do_one_initcall+0x48/0x258
kernel_init_freeable+0x1a4/0x23c
kernel_init+0x10/0xf8
ret_from_fork+0x10/0x18 |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: mmci: stm32: fix DMA API overlapping mappings warning
Turning on CONFIG_DMA_API_DEBUG_SG results in the following warning:
DMA-API: mmci-pl18x 48220000.mmc: cacheline tracking EEXIST,
overlapping mappings aren't supported
WARNING: CPU: 1 PID: 51 at kernel/dma/debug.c:568
add_dma_entry+0x234/0x2f4
Modules linked in:
CPU: 1 PID: 51 Comm: kworker/1:2 Not tainted 6.1.28 #1
Hardware name: STMicroelectronics STM32MP257F-EV1 Evaluation Board (DT)
Workqueue: events_freezable mmc_rescan
Call trace:
add_dma_entry+0x234/0x2f4
debug_dma_map_sg+0x198/0x350
__dma_map_sg_attrs+0xa0/0x110
dma_map_sg_attrs+0x10/0x2c
sdmmc_idma_prep_data+0x80/0xc0
mmci_prep_data+0x38/0x84
mmci_start_data+0x108/0x2dc
mmci_request+0xe4/0x190
__mmc_start_request+0x68/0x140
mmc_start_request+0x94/0xc0
mmc_wait_for_req+0x70/0x100
mmc_send_tuning+0x108/0x1ac
sdmmc_execute_tuning+0x14c/0x210
mmc_execute_tuning+0x48/0xec
mmc_sd_init_uhs_card.part.0+0x208/0x464
mmc_sd_init_card+0x318/0x89c
mmc_attach_sd+0xe4/0x180
mmc_rescan+0x244/0x320
DMA API debug brings to light leaking dma-mappings as dma_map_sg and
dma_unmap_sg are not correctly balanced.
If an error occurs in mmci_cmd_irq function, only mmci_dma_error
function is called and as this API is not managed on stm32 variant,
dma_unmap_sg is never called in this error path. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix iopt_access_list_id overwrite bug
Syzkaller reported the following WARN_ON:
WARNING: CPU: 1 PID: 4738 at drivers/iommu/iommufd/io_pagetable.c:1360
Call Trace:
iommufd_access_change_ioas+0x2fe/0x4e0
iommufd_access_destroy_object+0x50/0xb0
iommufd_object_remove+0x2a3/0x490
iommufd_object_destroy_user
iommufd_access_destroy+0x71/0xb0
iommufd_test_staccess_release+0x89/0xd0
__fput+0x272/0xb50
__fput_sync+0x4b/0x60
__do_sys_close
__se_sys_close
__x64_sys_close+0x8b/0x110
do_syscall_x64
The mismatch between the access pointer in the list and the passed-in
pointer is resulting from an overwrite of access->iopt_access_list_id, in
iopt_add_access(). Called from iommufd_access_change_ioas() when
xa_alloc() succeeds but iopt_calculate_iova_alignment() fails.
Add a new_id in iopt_add_access() and only update iopt_access_list_id when
returning successfully. |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix protection fault in iommufd_test_syz_conv_iova
Syzkaller reported the following bug:
general protection fault, probably for non-canonical address 0xdffffc0000000038: 0000 [#1] SMP KASAN
KASAN: null-ptr-deref in range [0x00000000000001c0-0x00000000000001c7]
Call Trace:
lock_acquire
lock_acquire+0x1ce/0x4f0
down_read+0x93/0x4a0
iommufd_test_syz_conv_iova+0x56/0x1f0
iommufd_test_access_rw.isra.0+0x2ec/0x390
iommufd_test+0x1058/0x1e30
iommufd_fops_ioctl+0x381/0x510
vfs_ioctl
__do_sys_ioctl
__se_sys_ioctl
__x64_sys_ioctl+0x170/0x1e0
do_syscall_x64
do_syscall_64+0x71/0x140
This is because the new iommufd_access_change_ioas() sets access->ioas to
NULL during its process, so the lock might be gone in a concurrent racing
context.
Fix this by doing the same access->ioas sanity as iommufd_access_rw() and
iommufd_access_pin_pages() functions do. |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: arm: Fix NULL dereference on scmi_perf_domain removal
On unloading of the scmi_perf_domain module got the below splat, when in
the DT provided to the system under test the '#power-domain-cells' property
was missing. Indeed, this particular setup causes the probe to bail out
early without giving any error, which leads to the ->remove() callback gets
to run too, but without all the expected initialized structures in place.
Add a check and bail out early on remove too.
Call trace:
scmi_perf_domain_remove+0x28/0x70 [scmi_perf_domain]
scmi_dev_remove+0x28/0x40 [scmi_core]
device_remove+0x54/0x90
device_release_driver_internal+0x1dc/0x240
driver_detach+0x58/0xa8
bus_remove_driver+0x78/0x108
driver_unregister+0x38/0x70
scmi_driver_unregister+0x28/0x180 [scmi_core]
scmi_perf_domain_driver_exit+0x18/0xb78 [scmi_perf_domain]
__arm64_sys_delete_module+0x1a8/0x2c0
invoke_syscall+0x50/0x128
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x34/0xb8
el0t_64_sync_handler+0x100/0x130
el0t_64_sync+0x190/0x198
Code: a90153f3 f9403c14 f9414800 955f8a05 (b9400a80)
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix double-free on socket dismantle
when MPTCP server accepts an incoming connection, it clones its listener
socket. However, the pointer to 'inet_opt' for the new socket has the same
value as the original one: as a consequence, on program exit it's possible
to observe the following splat:
BUG: KASAN: double-free in inet_sock_destruct+0x54f/0x8b0
Free of addr ffff888485950880 by task swapper/25/0
CPU: 25 PID: 0 Comm: swapper/25 Kdump: loaded Not tainted 6.8.0-rc1+ #609
Hardware name: Supermicro SYS-6027R-72RF/X9DRH-7TF/7F/iTF/iF, BIOS 3.0 07/26/2013
Call Trace:
<IRQ>
dump_stack_lvl+0x32/0x50
print_report+0xca/0x620
kasan_report_invalid_free+0x64/0x90
__kasan_slab_free+0x1aa/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
rcu_do_batch+0x34e/0xd90
rcu_core+0x559/0xac0
__do_softirq+0x183/0x5a4
irq_exit_rcu+0x12d/0x170
sysvec_apic_timer_interrupt+0x6b/0x80
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x16/0x20
RIP: 0010:cpuidle_enter_state+0x175/0x300
Code: 30 00 0f 84 1f 01 00 00 83 e8 01 83 f8 ff 75 e5 48 83 c4 18 44 89 e8 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc fb 45 85 ed <0f> 89 60 ff ff ff 48 c1 e5 06 48 c7 43 18 00 00 00 00 48 83 44 2b
RSP: 0018:ffff888481cf7d90 EFLAGS: 00000202
RAX: 0000000000000000 RBX: ffff88887facddc8 RCX: 0000000000000000
RDX: 1ffff1110ff588b1 RSI: 0000000000000019 RDI: ffff88887fac4588
RBP: 0000000000000004 R08: 0000000000000002 R09: 0000000000043080
R10: 0009b02ea273363f R11: ffff88887fabf42b R12: ffffffff932592e0
R13: 0000000000000004 R14: 0000000000000000 R15: 00000022c880ec80
cpuidle_enter+0x4a/0xa0
do_idle+0x310/0x410
cpu_startup_entry+0x51/0x60
start_secondary+0x211/0x270
secondary_startup_64_no_verify+0x184/0x18b
</TASK>
Allocated by task 6853:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
__kasan_kmalloc+0xa6/0xb0
__kmalloc+0x1eb/0x450
cipso_v4_sock_setattr+0x96/0x360
netlbl_sock_setattr+0x132/0x1f0
selinux_netlbl_socket_post_create+0x6c/0x110
selinux_socket_post_create+0x37b/0x7f0
security_socket_post_create+0x63/0xb0
__sock_create+0x305/0x450
__sys_socket_create.part.23+0xbd/0x130
__sys_socket+0x37/0xb0
__x64_sys_socket+0x6f/0xb0
do_syscall_64+0x83/0x160
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Freed by task 6858:
kasan_save_stack+0x1c/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x3b/0x60
__kasan_slab_free+0x12c/0x1f0
kfree+0xed/0x2e0
inet_sock_destruct+0x54f/0x8b0
__sk_destruct+0x48/0x5b0
subflow_ulp_release+0x1f0/0x250
tcp_cleanup_ulp+0x6e/0x110
tcp_v4_destroy_sock+0x5a/0x3a0
inet_csk_destroy_sock+0x135/0x390
tcp_fin+0x416/0x5c0
tcp_data_queue+0x1bc8/0x4310
tcp_rcv_state_process+0x15a3/0x47b0
tcp_v4_do_rcv+0x2c1/0x990
tcp_v4_rcv+0x41fb/0x5ed0
ip_protocol_deliver_rcu+0x6d/0x9f0
ip_local_deliver_finish+0x278/0x360
ip_local_deliver+0x182/0x2c0
ip_rcv+0xb5/0x1c0
__netif_receive_skb_one_core+0x16e/0x1b0
process_backlog+0x1e3/0x650
__napi_poll+0xa6/0x500
net_rx_action+0x740/0xbb0
__do_softirq+0x183/0x5a4
The buggy address belongs to the object at ffff888485950880
which belongs to the cache kmalloc-64 of size 64
The buggy address is located 0 bytes inside of
64-byte region [ffff888485950880, ffff8884859508c0)
The buggy address belongs to the physical page:
page:0000000056d1e95e refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888485950700 pfn:0x485950
flags: 0x57ffffc0000800(slab|node=1|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 0057ffffc0000800 ffff88810004c640 ffffea00121b8ac0 dead000000000006
raw: ffff888485950700 0000000000200019 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888485950780: fa fb fb
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix possible deadlock in subflow diag
Syzbot and Eric reported a lockdep splat in the subflow diag:
WARNING: possible circular locking dependency detected
6.8.0-rc4-syzkaller-00212-g40b9385dd8e6 #0 Not tainted
syz-executor.2/24141 is trying to acquire lock:
ffff888045870130 (k-sk_lock-AF_INET6){+.+.}-{0:0}, at:
tcp_diag_put_ulp net/ipv4/tcp_diag.c:100 [inline]
ffff888045870130 (k-sk_lock-AF_INET6){+.+.}-{0:0}, at:
tcp_diag_get_aux+0x738/0x830 net/ipv4/tcp_diag.c:137
but task is already holding lock:
ffffc9000135e488 (&h->lhash2[i].lock){+.+.}-{2:2}, at: spin_lock
include/linux/spinlock.h:351 [inline]
ffffc9000135e488 (&h->lhash2[i].lock){+.+.}-{2:2}, at:
inet_diag_dump_icsk+0x39f/0x1f80 net/ipv4/inet_diag.c:1038
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&h->lhash2[i].lock){+.+.}-{2:2}:
lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754
__raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline]
_raw_spin_lock+0x2e/0x40 kernel/locking/spinlock.c:154
spin_lock include/linux/spinlock.h:351 [inline]
__inet_hash+0x335/0xbe0 net/ipv4/inet_hashtables.c:743
inet_csk_listen_start+0x23a/0x320 net/ipv4/inet_connection_sock.c:1261
__inet_listen_sk+0x2a2/0x770 net/ipv4/af_inet.c:217
inet_listen+0xa3/0x110 net/ipv4/af_inet.c:239
rds_tcp_listen_init+0x3fd/0x5a0 net/rds/tcp_listen.c:316
rds_tcp_init_net+0x141/0x320 net/rds/tcp.c:577
ops_init+0x352/0x610 net/core/net_namespace.c:136
__register_pernet_operations net/core/net_namespace.c:1214 [inline]
register_pernet_operations+0x2cb/0x660 net/core/net_namespace.c:1283
register_pernet_device+0x33/0x80 net/core/net_namespace.c:1370
rds_tcp_init+0x62/0xd0 net/rds/tcp.c:735
do_one_initcall+0x238/0x830 init/main.c:1236
do_initcall_level+0x157/0x210 init/main.c:1298
do_initcalls+0x3f/0x80 init/main.c:1314
kernel_init_freeable+0x42f/0x5d0 init/main.c:1551
kernel_init+0x1d/0x2a0 init/main.c:1441
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242
-> #0 (k-sk_lock-AF_INET6){+.+.}-{0:0}:
check_prev_add kernel/locking/lockdep.c:3134 [inline]
check_prevs_add kernel/locking/lockdep.c:3253 [inline]
validate_chain+0x18ca/0x58e0 kernel/locking/lockdep.c:3869
__lock_acquire+0x1345/0x1fd0 kernel/locking/lockdep.c:5137
lock_acquire+0x1e3/0x530 kernel/locking/lockdep.c:5754
lock_sock_fast include/net/sock.h:1723 [inline]
subflow_get_info+0x166/0xd20 net/mptcp/diag.c:28
tcp_diag_put_ulp net/ipv4/tcp_diag.c:100 [inline]
tcp_diag_get_aux+0x738/0x830 net/ipv4/tcp_diag.c:137
inet_sk_diag_fill+0x10ed/0x1e00 net/ipv4/inet_diag.c:345
inet_diag_dump_icsk+0x55b/0x1f80 net/ipv4/inet_diag.c:1061
__inet_diag_dump+0x211/0x3a0 net/ipv4/inet_diag.c:1263
inet_diag_dump_compat+0x1c1/0x2d0 net/ipv4/inet_diag.c:1371
netlink_dump+0x59b/0xc80 net/netlink/af_netlink.c:2264
__netlink_dump_start+0x5df/0x790 net/netlink/af_netlink.c:2370
netlink_dump_start include/linux/netlink.h:338 [inline]
inet_diag_rcv_msg_compat+0x209/0x4c0 net/ipv4/inet_diag.c:1405
sock_diag_rcv_msg+0xe7/0x410
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2543
sock_diag_rcv+0x2a/0x40 net/core/sock_diag.c:280
netlink_unicast_kernel net/netlink/af_netlink.c:1341 [inline]
netlink_unicast+0x7ea/0x980 net/netlink/af_netlink.c:1367
netlink_sendmsg+0xa3b/0xd70 net/netlink/af_netlink.c:1908
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:745
____sys_sendmsg+0x525/0x7d0 net/socket.c:2584
___sys_sendmsg net/socket.c:2638 [inline]
__sys_sendmsg+0x2b0/0x3a0 net/socket.c:2667
do_syscall_64+0xf9/0x240
entry_SYSCALL_64_after_hwframe+0x6f/0x77
As noted by Eric we can break the lock dependency chain avoid
dumping
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix task hung while purging oob_skb in GC.
syzbot reported a task hung; at the same time, GC was looping infinitely
in list_for_each_entry_safe() for OOB skb. [0]
syzbot demonstrated that the list_for_each_entry_safe() was not actually
safe in this case.
A single skb could have references for multiple sockets. If we free such
a skb in the list_for_each_entry_safe(), the current and next sockets could
be unlinked in a single iteration.
unix_notinflight() uses list_del_init() to unlink the socket, so the
prefetched next socket forms a loop itself and list_for_each_entry_safe()
never stops.
Here, we must use while() and make sure we always fetch the first socket.
[0]:
Sending NMI from CPU 0 to CPUs 1:
NMI backtrace for cpu 1
CPU: 1 PID: 5065 Comm: syz-executor236 Not tainted 6.8.0-rc3-syzkaller-00136-g1f719a2f3fa6 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
RIP: 0010:preempt_count arch/x86/include/asm/preempt.h:26 [inline]
RIP: 0010:check_kcov_mode kernel/kcov.c:173 [inline]
RIP: 0010:__sanitizer_cov_trace_pc+0xd/0x60 kernel/kcov.c:207
Code: cc cc cc cc 66 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 65 48 8b 14 25 40 c2 03 00 <65> 8b 05 b4 7c 78 7e a9 00 01 ff 00 48 8b 34 24 74 0f f6 c4 01 74
RSP: 0018:ffffc900033efa58 EFLAGS: 00000283
RAX: ffff88807b077800 RBX: ffff88807b077800 RCX: 1ffffffff27b1189
RDX: ffff88802a5a3b80 RSI: ffffffff8968488d RDI: ffff88807b077f70
RBP: ffffc900033efbb0 R08: 0000000000000001 R09: fffffbfff27a900c
R10: ffffffff93d48067 R11: ffffffff8ae000eb R12: ffff88807b077800
R13: dffffc0000000000 R14: ffff88807b077e40 R15: 0000000000000001
FS: 0000000000000000(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000564f4fc1e3a8 CR3: 000000000d57a000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<NMI>
</NMI>
<TASK>
unix_gc+0x563/0x13b0 net/unix/garbage.c:319
unix_release_sock+0xa93/0xf80 net/unix/af_unix.c:683
unix_release+0x91/0xf0 net/unix/af_unix.c:1064
__sock_release+0xb0/0x270 net/socket.c:659
sock_close+0x1c/0x30 net/socket.c:1421
__fput+0x270/0xb80 fs/file_table.c:376
task_work_run+0x14f/0x250 kernel/task_work.c:180
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0xa8a/0x2ad0 kernel/exit.c:871
do_group_exit+0xd4/0x2a0 kernel/exit.c:1020
__do_sys_exit_group kernel/exit.c:1031 [inline]
__se_sys_exit_group kernel/exit.c:1029 [inline]
__x64_sys_exit_group+0x3e/0x50 kernel/exit.c:1029
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xd5/0x270 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x6f/0x77
RIP: 0033:0x7f9d6cbdac09
Code: Unable to access opcode bytes at 0x7f9d6cbdabdf.
RSP: 002b:00007fff5952feb8 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f9d6cbdac09
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000000
RBP: 00007f9d6cc552b0 R08: ffffffffffffffb8 R09: 0000000000000006
R10: 0000000000000006 R11: 0000000000000246 R12: 00007f9d6cc552b0
R13: 0000000000000000 R14: 00007f9d6cc55d00 R15: 00007f9d6cbabe70
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
HID: nvidia-shield: Add missing null pointer checks to LED initialization
devm_kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. Ensure the allocation was successful
by checking the pointer validity.
[jkosina@suse.com: tweak changelog a bit] |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Change acpi_core_pic[NR_CPUS] to acpi_core_pic[MAX_CORE_PIC]
With default config, the value of NR_CPUS is 64. When HW platform has
more then 64 cpus, system will crash on these platforms. MAX_CORE_PIC
is the maximum cpu number in MADT table (max physical number) which can
exceed the supported maximum cpu number (NR_CPUS, max logical number),
but kernel should not crash. Kernel should boot cpus with NR_CPUS, let
the remainder cpus stay in BIOS.
The potential crash reason is that the array acpi_core_pic[NR_CPUS] can
be overflowed when parsing MADT table, and it is obvious that CORE_PIC
should be corresponding to physical core rather than logical core, so it
is better to define the array as acpi_core_pic[MAX_CORE_PIC].
With the patch, system can boot up 64 vcpus with qemu parameter -smp 128,
otherwise system will crash with the following message.
[ 0.000000] CPU 0 Unable to handle kernel paging request at virtual address 0000420000004259, era == 90000000037a5f0c, ra == 90000000037a46ec
[ 0.000000] Oops[#1]:
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.8.0-rc2+ #192
[ 0.000000] Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022
[ 0.000000] pc 90000000037a5f0c ra 90000000037a46ec tp 9000000003c90000 sp 9000000003c93d60
[ 0.000000] a0 0000000000000019 a1 9000000003d93bc0 a2 0000000000000000 a3 9000000003c93bd8
[ 0.000000] a4 9000000003c93a74 a5 9000000083c93a67 a6 9000000003c938f0 a7 0000000000000005
[ 0.000000] t0 0000420000004201 t1 0000000000000000 t2 0000000000000001 t3 0000000000000001
[ 0.000000] t4 0000000000000003 t5 0000000000000000 t6 0000000000000030 t7 0000000000000063
[ 0.000000] t8 0000000000000014 u0 ffffffffffffffff s9 0000000000000000 s0 9000000003caee98
[ 0.000000] s1 90000000041b0480 s2 9000000003c93da0 s3 9000000003c93d98 s4 9000000003c93d90
[ 0.000000] s5 9000000003caa000 s6 000000000a7fd000 s7 000000000f556b60 s8 000000000e0a4330
[ 0.000000] ra: 90000000037a46ec platform_init+0x214/0x250
[ 0.000000] ERA: 90000000037a5f0c efi_runtime_init+0x30/0x94
[ 0.000000] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
[ 0.000000] PRMD: 00000000 (PPLV0 -PIE -PWE)
[ 0.000000] EUEN: 00000000 (-FPE -SXE -ASXE -BTE)
[ 0.000000] ECFG: 00070800 (LIE=11 VS=7)
[ 0.000000] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0)
[ 0.000000] BADV: 0000420000004259
[ 0.000000] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)
[ 0.000000] Modules linked in:
[ 0.000000] Process swapper (pid: 0, threadinfo=(____ptrval____), task=(____ptrval____))
[ 0.000000] Stack : 9000000003c93a14 9000000003800898 90000000041844f8 90000000037a46ec
[ 0.000000] 000000000a7fd000 0000000008290000 0000000000000000 0000000000000000
[ 0.000000] 0000000000000000 0000000000000000 00000000019d8000 000000000f556b60
[ 0.000000] 000000000a7fd000 000000000f556b08 9000000003ca7700 9000000003800000
[ 0.000000] 9000000003c93e50 9000000003800898 9000000003800108 90000000037a484c
[ 0.000000] 000000000e0a4330 000000000f556b60 000000000a7fd000 000000000f556b08
[ 0.000000] 9000000003ca7700 9000000004184000 0000000000200000 000000000e02b018
[ 0.000000] 000000000a7fd000 90000000037a0790 9000000003800108 0000000000000000
[ 0.000000] 0000000000000000 000000000e0a4330 000000000f556b60 000000000a7fd000
[ 0.000000] 000000000f556b08 000000000eaae298 000000000eaa5040 0000000000200000
[ 0.000000] ...
[ 0.000000] Call Trace:
[ 0.000000] [<90000000037a5f0c>] efi_runtime_init+0x30/0x94
[ 0.000000] [<90000000037a46ec>] platform_init+0x214/0x250
[ 0.000000] [<90000000037a484c>] setup_arch+0x124/0x45c
[ 0.000000] [<90000000037a0790>] start_kernel+0x90/0x670
[ 0.000000] [<900000000378b0d8>] kernel_entry+0xd8/0xdc |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Disable IRQ before init_fn() for nonboot CPUs
Disable IRQ before init_fn() for nonboot CPUs when hotplug, in order to
silence such warnings (and also avoid potential errors due to unexpected
interrupts):
WARNING: CPU: 1 PID: 0 at kernel/rcu/tree.c:4503 rcu_cpu_starting+0x214/0x280
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.6.17+ #1198
pc 90000000048e3334 ra 90000000047bd56c tp 900000010039c000 sp 900000010039fdd0
a0 0000000000000001 a1 0000000000000006 a2 900000000802c040 a3 0000000000000000
a4 0000000000000001 a5 0000000000000004 a6 0000000000000000 a7 90000000048e3f4c
t0 0000000000000001 t1 9000000005c70968 t2 0000000004000000 t3 000000000005e56e
t4 00000000000002e4 t5 0000000000001000 t6 ffffffff80000000 t7 0000000000040000
t8 9000000007931638 u0 0000000000000006 s9 0000000000000004 s0 0000000000000001
s1 9000000006356ac0 s2 9000000007244000 s3 0000000000000001 s4 0000000000000001
s5 900000000636f000 s6 7fffffffffffffff s7 9000000002123940 s8 9000000001ca55f8
ra: 90000000047bd56c tlb_init+0x24c/0x528
ERA: 90000000048e3334 rcu_cpu_starting+0x214/0x280
CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
PRMD: 00000000 (PPLV0 -PIE -PWE)
EUEN: 00000000 (-FPE -SXE -ASXE -BTE)
ECFG: 00071000 (LIE=12 VS=7)
ESTAT: 000c0000 [BRK] (IS= ECode=12 EsubCode=0)
PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.6.17+ #1198
Stack : 0000000000000000 9000000006375000 9000000005b61878 900000010039c000
900000010039fa30 0000000000000000 900000010039fa38 900000000619a140
9000000006456888 9000000006456880 900000010039f950 0000000000000001
0000000000000001 cb0cb028ec7e52e1 0000000002b90000 9000000100348700
0000000000000000 0000000000000001 ffffffff916d12f1 0000000000000003
0000000000040000 9000000007930370 0000000002b90000 0000000000000004
9000000006366000 900000000619a140 0000000000000000 0000000000000004
0000000000000000 0000000000000009 ffffffffffc681f2 9000000002123940
9000000001ca55f8 9000000006366000 90000000047a4828 00007ffff057ded8
00000000000000b0 0000000000000000 0000000000000000 0000000000071000
...
Call Trace:
[<90000000047a4828>] show_stack+0x48/0x1a0
[<9000000005b61874>] dump_stack_lvl+0x84/0xcc
[<90000000047f60ac>] __warn+0x8c/0x1e0
[<9000000005b0ab34>] report_bug+0x1b4/0x280
[<9000000005b63110>] do_bp+0x2d0/0x480
[<90000000047a2e20>] handle_bp+0x120/0x1c0
[<90000000048e3334>] rcu_cpu_starting+0x214/0x280
[<90000000047bd568>] tlb_init+0x248/0x528
[<90000000047a4c44>] per_cpu_trap_init+0x124/0x160
[<90000000047a19f4>] cpu_probe+0x494/0xa00
[<90000000047b551c>] start_secondary+0x3c/0xc0
[<9000000005b66134>] smpboot_entry+0x50/0x58 |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/pci: Skip to handle RAS errors if CXL.mem device is detached
The PCI AER model is an awkward fit for CXL error handling. While the
expectation is that a PCI device can escalate to link reset to recover
from an AER event, the same reset on CXL amounts to a surprise memory
hotplug of massive amounts of memory.
At present, the CXL error handler attempts some optimistic error
handling to unbind the device from the cxl_mem driver after reaping some
RAS register values. This results in a "hopeful" attempt to unplug the
memory, but there is no guarantee that will succeed.
A subsequent AER notification after the memdev unbind event can no
longer assume the registers are mapped. Check for memdev bind before
reaping status register values to avoid crashes of the form:
BUG: unable to handle page fault for address: ffa00000195e9100
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
[...]
RIP: 0010:__cxl_handle_ras+0x30/0x110 [cxl_core]
[...]
Call Trace:
<TASK>
? __die+0x24/0x70
? page_fault_oops+0x82/0x160
? kernelmode_fixup_or_oops+0x84/0x110
? exc_page_fault+0x113/0x170
? asm_exc_page_fault+0x26/0x30
? __pfx_dpc_reset_link+0x10/0x10
? __cxl_handle_ras+0x30/0x110 [cxl_core]
? find_cxl_port+0x59/0x80 [cxl_core]
cxl_handle_rp_ras+0xbc/0xd0 [cxl_core]
cxl_error_detected+0x6c/0xf0 [cxl_core]
report_error_detected+0xc7/0x1c0
pci_walk_bus+0x73/0x90
pcie_do_recovery+0x23f/0x330
Longer term, the unbind and PCI_ERS_RESULT_DISCONNECT behavior might
need to be replaced with a new PCI_ERS_RESULT_PANIC. |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/pci: Fix disabling memory if DVSEC CXL Range does not match a CFMWS window
The Linux CXL subsystem is built on the assumption that HPA == SPA.
That is, the host physical address (HPA) the HDM decoder registers are
programmed with are system physical addresses (SPA).
During HDM decoder setup, the DVSEC CXL range registers (cxl-3.1,
8.1.3.8) are checked if the memory is enabled and the CXL range is in
a HPA window that is described in a CFMWS structure of the CXL host
bridge (cxl-3.1, 9.18.1.3).
Now, if the HPA is not an SPA, the CXL range does not match a CFMWS
window and the CXL memory range will be disabled then. The HDM decoder
stops working which causes system memory being disabled and further a
system hang during HDM decoder initialization, typically when a CXL
enabled kernel boots.
Prevent a system hang and do not disable the HDM decoder if the
decoder's CXL range is not found in a CFMWS window.
Note the change only fixes a hardware hang, but does not implement
HPA/SPA translation. Support for this can be added in a follow on
patch series. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: pscsi: Fix bio_put() for error case
As of commit 066ff571011d ("block: turn bio_kmalloc into a simple kmalloc
wrapper"), a bio allocated by bio_kmalloc() must be freed by bio_uninit()
and kfree(). That is not done properly for the error case, hitting WARN and
NULL pointer dereference in bio_free(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm/swap: fix race when skipping swapcache
When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads
swapin the same entry at the same time, they get different pages (A, B).
Before one thread (T0) finishes the swapin and installs page (A) to the
PTE, another thread (T1) could finish swapin of page (B), swap_free the
entry, then swap out the possibly modified page reusing the same entry.
It breaks the pte_same check in (T0) because PTE value is unchanged,
causing ABA problem. Thread (T0) will install a stalled page (A) into the
PTE and cause data corruption.
One possible callstack is like this:
CPU0 CPU1
---- ----
do_swap_page() do_swap_page() with same entry
<direct swapin path> <direct swapin path>
<alloc page A> <alloc page B>
swap_read_folio() <- read to page A swap_read_folio() <- read to page B
<slow on later locks or interrupt> <finished swapin first>
... set_pte_at()
swap_free() <- entry is free
<write to page B, now page A stalled>
<swap out page B to same swap entry>
pte_same() <- Check pass, PTE seems
unchanged, but page A
is stalled!
swap_free() <- page B content lost!
set_pte_at() <- staled page A installed!
And besides, for ZRAM, swap_free() allows the swap device to discard the
entry content, so even if page (B) is not modified, if swap_read_folio()
on CPU0 happens later than swap_free() on CPU1, it may also cause data
loss.
To fix this, reuse swapcache_prepare which will pin the swap entry using
the cache flag, and allow only one thread to swap it in, also prevent any
parallel code from putting the entry in the cache. Release the pin after
PT unlocked.
Racers just loop and wait since it's a rare and very short event. A
schedule_timeout_uninterruptible(1) call is added to avoid repeated page
faults wasting too much CPU, causing livelock or adding too much noise to
perf statistics. A similar livelock issue was described in commit
029c4628b2eb ("mm: swap: get rid of livelock in swapin readahead")
Reproducer:
This race issue can be triggered easily using a well constructed
reproducer and patched brd (with a delay in read path) [1]:
With latest 6.8 mainline, race caused data loss can be observed easily:
$ gcc -g -lpthread test-thread-swap-race.c && ./a.out
Polulating 32MB of memory region...
Keep swapping out...
Starting round 0...
Spawning 65536 workers...
32746 workers spawned, wait for done...
Round 0: Error on 0x5aa00, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x395200, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x3fd000, expected 32746, got 32737, 9 data loss!
Round 0 Failed, 15 data loss!
This reproducer spawns multiple threads sharing the same memory region
using a small swap device. Every two threads updates mapped pages one by
one in opposite direction trying to create a race, with one dedicated
thread keep swapping out the data out using madvise.
The reproducer created a reproduce rate of about once every 5 minutes, so
the race should be totally possible in production.
After this patch, I ran the reproducer for over a few hundred rounds and
no data loss observed.
Performance overhead is minimal, microbenchmark swapin 10G from 32G
zram:
Before: 10934698 us
After: 11157121 us
Cached: 13155355 us (Dropping SWP_SYNCHRONOUS_IO flag)
[kasong@tencent.com: v4] |
| In the Linux kernel, the following vulnerability has been resolved:
md: Don't ignore suspended array in md_check_recovery()
mddev_suspend() never stop sync_thread, hence it doesn't make sense to
ignore suspended array in md_check_recovery(), which might cause
sync_thread can't be unregistered.
After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following
hang can be triggered by test shell/integrity-caching.sh:
1) suspend the array:
raid_postsuspend
mddev_suspend
2) stop the array:
raid_dtr
md_stop
__md_stop_writes
stop_sync_thread
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_wakeup_thread_directly(mddev->sync_thread);
wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3) sync thread done:
md_do_sync
set_bit(MD_RECOVERY_DONE, &mddev->recovery);
md_wakeup_thread(mddev->thread);
4) daemon thread can't unregister sync thread:
md_check_recovery
if (mddev->suspended)
return; -> return directly
md_read_sync_thread
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
-> MD_RECOVERY_RUNNING can't be cleared, hence step 2 hang;
This problem is not just related to dm-raid, fix it by ignoring
suspended array in md_check_recovery(). And follow up patches will
improve dm-raid better to frozen sync thread during suspend. |