| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability has been found in Kamailio 5.5. This affects the function yyerror_at of the file src/core/cfg.y of the component Grammar Rule Handler. Such manipulation leads to null pointer dereference. The attack needs to be performed locally. The exploit has been disclosed to the public and may be used. The actual existence of this vulnerability is currently in question. This attack requires manipulating config files which might not be a realistic scenario in many cases. The vendor was contacted early about this disclosure but did not respond in any way. |
| A flaw has been found in Kamailio 5.5. The impacted element is the function rve_is_constant of the file src/core/rvalue.c. This manipulation causes null pointer dereference. The attack needs to be launched locally. The exploit has been published and may be used. It is still unclear if this vulnerability genuinely exists. This attack requires manipulating config files which might not be a realistic scenario in many cases. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability, which was classified as problematic, has been found in GNU elfutils 0.192. This issue affects the function gelf_getsymshndx of the file strip.c of the component eu-strip. The manipulation leads to denial of service. The attack needs to be approached locally. The exploit has been disclosed to the public and may be used. The identifier of the patch is fbf1df9ca286de3323ae541973b08449f8d03aba. It is recommended to apply a patch to fix this issue. |
| A vulnerability classified as problematic was found in GNU elfutils 0.192. This vulnerability affects the function elf_strptr in the library /libelf/elf_strptr.c of the component eu-strip. The manipulation leads to denial of service. It is possible to launch the attack on the local host. The complexity of an attack is rather high. The exploitation appears to be difficult. The exploit has been disclosed to the public and may be used. The name of the patch is b16f441cca0a4841050e3215a9f120a6d8aea918. It is recommended to apply a patch to fix this issue. |
| A vulnerability has been found in GNU elfutils 0.192 and classified as problematic. This vulnerability affects the function handle_dynamic_symtab of the file readelf.c of the component eu-read. The manipulation leads to null pointer dereference. Attacking locally is a requirement. The exploit has been disclosed to the public and may be used. The patch is identified as b38e562a4c907e08171c76b8b2def8464d5a104a. It is recommended to apply a patch to fix this issue. |
| The issue was addressed with improved memory handling. This issue is fixed in macOS Sonoma 14.4. Processing a file may lead to a denial-of-service or potentially disclose memory contents. |
| The issue was addressed with improved memory handling. This issue is fixed in macOS Sonoma 14.4. Processing a file may lead to a denial-of-service or potentially disclose memory contents. |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.35 and prior and 8.2.0 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |
| A lack of rate limiting in the 'Forgot Password' feature of PHPJabbers Meeting Room Booking System v1.0 allows attackers to send an excessive amount of email for a legitimate user, leading to a possible Denial of Service (DoS) via a large amount of generated e-mail messages. |
| A vulnerability in Node.js has been identified, allowing for a Denial of Service (DoS) attack through resource exhaustion when using the fetch() function to retrieve content from an untrusted URL.
The vulnerability stems from the fact that the fetch() function in Node.js always decodes Brotli, making it possible for an attacker to cause resource exhaustion when fetching content from an untrusted URL.
An attacker controlling the URL passed into fetch() can exploit this vulnerability to exhaust memory, potentially leading to process termination, depending on the system configuration. |
| A vulnerability in Node.js HTTP servers allows an attacker to send a specially crafted HTTP request with chunked encoding, leading to resource exhaustion and denial of service (DoS). The server reads an unbounded number of bytes from a single connection, exploiting the lack of limitations on chunk extension bytes. The issue can cause CPU and network bandwidth exhaustion, bypassing standard safeguards like timeouts and body size limits. |
| ** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: Based on the analysis by MITRE and review of community feedback, the reported conditions represent expected and intentional behavior within dnsmasq's documented design, rather than security vulnerabilities. |
| ** REJECT ** DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: Based on the analysis by MITRE and review of community feedback, the reported conditions represent expected and intentional behavior within dnsmasq's documented design, rather than security vulnerabilities. |
| The issue was addressed with improved checks. This issue is fixed in iPadOS 17.7.3, watchOS 11.2, visionOS 2.2, tvOS 18.2, macOS Sequoia 15.2, Safari 18.2, iOS 18.2 and iPadOS 18.2. Processing maliciously crafted web content may lead to an unexpected process crash. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: amd_sfh: Switch to device-managed dmam_alloc_coherent()
Using the device-managed version allows to simplify clean-up in probe()
error path.
Additionally, this device-managed ensures proper cleanup, which helps to
resolve memory errors, page faults, btrfs going read-only, and btrfs
disk corruption. |
| In the Linux kernel, the following vulnerability has been resolved:
net: Fix an unsafe loop on the list
The kernel may crash when deleting a genetlink family if there are still
listeners for that family:
Oops: Kernel access of bad area, sig: 11 [#1]
...
NIP [c000000000c080bc] netlink_update_socket_mc+0x3c/0xc0
LR [c000000000c0f764] __netlink_clear_multicast_users+0x74/0xc0
Call Trace:
__netlink_clear_multicast_users+0x74/0xc0
genl_unregister_family+0xd4/0x2d0
Change the unsafe loop on the list to a safe one, because inside the
loop there is an element removal from this list. |
| The issue was addressed with improved memory handling. This issue is fixed in iPadOS 17.7.3, macOS Ventura 13.7.2, iOS 18.1 and iPadOS 18.1, macOS Sonoma 14.7.2. Processing a malicious crafted file may lead to a denial-of-service. |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Fix event leak upon exit
When a task is scheduled out, pending sigtrap deliveries are deferred
to the target task upon resume to userspace via task_work.
However failures while adding an event's callback to the task_work
engine are ignored. And since the last call for events exit happen
after task work is eventually closed, there is a small window during
which pending sigtrap can be queued though ignored, leaking the event
refcount addition such as in the following scenario:
TASK A
-----
do_exit()
exit_task_work(tsk);
<IRQ>
perf_event_overflow()
event->pending_sigtrap = pending_id;
irq_work_queue(&event->pending_irq);
</IRQ>
=========> PREEMPTION: TASK A -> TASK B
event_sched_out()
event->pending_sigtrap = 0;
atomic_long_inc_not_zero(&event->refcount)
// FAILS: task work has exited
task_work_add(&event->pending_task)
[...]
<IRQ WORK>
perf_pending_irq()
// early return: event->oncpu = -1
</IRQ WORK>
[...]
=========> TASK B -> TASK A
perf_event_exit_task(tsk)
perf_event_exit_event()
free_event()
WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1)
// leak event due to unexpected refcount == 2
As a result the event is never released while the task exits.
Fix this with appropriate task_work_add()'s error handling. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: fix a possible leak when destroy a ctrl during qp establishment
In nvmet_sq_destroy we capture sq->ctrl early and if it is non-NULL we
know that a ctrl was allocated (in the admin connect request handler)
and we need to release pending AERs, clear ctrl->sqs and sq->ctrl
(for nvme-loop primarily), and drop the final reference on the ctrl.
However, a small window is possible where nvmet_sq_destroy starts (as
a result of the client giving up and disconnecting) concurrently with
the nvme admin connect cmd (which may be in an early stage). But *before*
kill_and_confirm of sq->ref (i.e. the admin connect managed to get an sq
live reference). In this case, sq->ctrl was allocated however after it was
captured in a local variable in nvmet_sq_destroy.
This prevented the final reference drop on the ctrl.
Solve this by re-capturing the sq->ctrl after all inflight request has
completed, where for sure sq->ctrl reference is final, and move forward
based on that.
This issue was observed in an environment with many hosts connecting
multiple ctrls simoutanuosly, creating a delay in allocating a ctrl
leading up to this race window. |
| In the Linux kernel, the following vulnerability has been resolved:
netrom: Fix a memory leak in nr_heartbeat_expiry()
syzbot reported a memory leak in nr_create() [0].
Commit 409db27e3a2e ("netrom: Fix use-after-free of a listening socket.")
added sock_hold() to the nr_heartbeat_expiry() function, where
a) a socket has a SOCK_DESTROY flag or
b) a listening socket has a SOCK_DEAD flag.
But in the case "a," when the SOCK_DESTROY flag is set, the file descriptor
has already been closed and the nr_release() function has been called.
So it makes no sense to hold the reference count because no one will
call another nr_destroy_socket() and put it as in the case "b."
nr_connect
nr_establish_data_link
nr_start_heartbeat
nr_release
switch (nr->state)
case NR_STATE_3
nr->state = NR_STATE_2
sock_set_flag(sk, SOCK_DESTROY);
nr_rx_frame
nr_process_rx_frame
switch (nr->state)
case NR_STATE_2
nr_state2_machine()
nr_disconnect()
nr_sk(sk)->state = NR_STATE_0
sock_set_flag(sk, SOCK_DEAD)
nr_heartbeat_expiry
switch (nr->state)
case NR_STATE_0
if (sock_flag(sk, SOCK_DESTROY) ||
(sk->sk_state == TCP_LISTEN
&& sock_flag(sk, SOCK_DEAD)))
sock_hold() // ( !!! )
nr_destroy_socket()
To fix the memory leak, let's call sock_hold() only for a listening socket.
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with Syzkaller.
[0]: https://syzkaller.appspot.com/bug?extid=d327a1f3b12e1e206c16 |