| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Kerberos 5 (aka krb5) 1.21.2 contains a memory leak vulnerability in /krb5/src/lib/gssapi/krb5/k5sealv3.c. |
| Guest can force Linux netback driver to hog large amounts of kernel memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Incoming data packets for a guest in the Linux kernel's netback driver are buffered until the guest is ready to process them. There are some measures taken for avoiding to pile up too much data, but those can be bypassed by the guest: There is a timeout how long the client side of an interface can stop consuming new packets before it is assumed to have stalled, but this timeout is rather long (60 seconds by default). Using a UDP connection on a fast interface can easily accumulate gigabytes of data in that time. (CVE-2021-28715) The timeout could even never trigger if the guest manages to have only one free slot in its RX queue ring page and the next package would require more than one free slot, which may be the case when using GSO, XDP, or software hashing. (CVE-2021-28714) |
| Bitcoin Core before 24.0.1 allows remote attackers to cause a denial of service (daemon crash) via a flood of low-difficulty header chains (aka a "Chain Width Expansion" attack) because a node does not first verify that a presented chain has enough work before committing to store it. |
| Bitcoin Core through 27.2 allows transaction-relay jamming via an off-chain protocol attack, a related issue to CVE-2024-52913. For example, the outcome of an HTLC (Hashed Timelock Contract) can be changed because a flood of transaction traffic prevents propagation of certain Lightning channel transactions. |
| Bitcoin Core before 25.0 allows remote attackers to cause a denial of service (blocktxn message-handling assertion and node exit) by including transactions in a blocktxn message that are not committed to in a block's merkle root. FillBlock can be called twice for one PartiallyDownloadedBlock instance. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/amdkfd: Fix kernel panic when reset failed and been triggered again
In SRIOV configuration, the reset may failed to bring asic back to normal but stop cpsch
already been called, the start_cpsch will not be called since there is no resume in this
case. When reset been triggered again, driver should avoid to do uninitialization again. |
| Allocation of Resources Without Limits or Throttling in GitHub repository ikus060/rdiffweb prior to 2.4.8. |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Hotspot). Supported versions that are affected are Oracle Java SE: 8u401, 8u401-perf, 11.0.22, 17.0.10, 21.0.2, 22; Oracle GraalVM for JDK: 17.0.10, 21.0.2, 22; Oracle GraalVM Enterprise Edition: 20.3.13 and 21.3.9. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized ability to cause a partial denial of service (partial DOS) of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:L). |
| Allocation of Resources Without Limits or Throttling in GitHub repository ikus060/rdiffweb prior to 2.4.8. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: intel: hfi: Add syscore callbacks for system-wide PM
The kernel allocates a memory buffer and provides its location to the
hardware, which uses it to update the HFI table. This allocation occurs
during boot and remains constant throughout runtime.
When resuming from hibernation, the restore kernel allocates a second
memory buffer and reprograms the HFI hardware with the new location as
part of a normal boot. The location of the second memory buffer may
differ from the one allocated by the image kernel.
When the restore kernel transfers control to the image kernel, its HFI
buffer becomes invalid, potentially leading to memory corruption if the
hardware writes to it (the hardware continues to use the buffer from the
restore kernel).
It is also possible that the hardware "forgets" the address of the memory
buffer when resuming from "deep" suspend. Memory corruption may also occur
in such a scenario.
To prevent the described memory corruption, disable HFI when preparing to
suspend or hibernate. Enable it when resuming.
Add syscore callbacks to handle the package of the boot CPU (packages of
non-boot CPUs are handled via CPU offline). Syscore ops always run on the
boot CPU. Additionally, HFI only needs to be disabled during "deep" suspend
and hibernation. Syscore ops only run in these cases.
[ rjw: Comment adjustment, subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
dma-debug: prevent an error message from causing runtime problems
For some drivers, that use the DMA API. This error message can be reached
several millions of times per second, causing spam to the kernel's printk
buffer and bringing the CPU usage up to 100% (so, it should be rate
limited). However, since there is at least one driver that is in the
mainline and suffers from the error condition, it is more useful to
err_printk() here instead of just rate limiting the error message (in hopes
that it will make it easier for other drivers that suffer from this issue
to be spotted). |
| An issue was discovered in Bento4 1.6.0-639. There ie excessive memory consumption in the function AP4_DataBuffer::ReallocateBuffer in Core/Ap4DataBuffer.cpp. |
| An issue was discovered in Bento4 1.6.0-639. There ie excessive memory consumption in the function AP4_Array<AP4_ElstEntry>::EnsureCapacity in Core/Ap4Array.h. |
| Allocation of Resources Without Limits or Throttling in GitHub repository ikus060/rdiffweb prior to 2.5.0a3. |
| Allocation of Resources Without Limits or Throttling in GitHub repository ikus060/rdiffweb prior to 2.5.0a3. |
| Allocation of Resources Without Limits or Throttling in GitHub repository ikus060/rdiffweb prior to 2.5.0. |
| vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Versions starting from 0.5.2 and prior to 0.8.5 are vulnerable to denial of service and data exposure via ZeroMQ on multi-node vLLM deployment. In a multi-node vLLM deployment, vLLM uses ZeroMQ for some multi-node communication purposes. The primary vLLM host opens an XPUB ZeroMQ socket and binds it to ALL interfaces. While the socket is always opened for a multi-node deployment, it is only used when doing tensor parallelism across multiple hosts. Any client with network access to this host can connect to this XPUB socket unless its port is blocked by a firewall. Once connected, these arbitrary clients will receive all of the same data broadcasted to all of the secondary vLLM hosts. This data is internal vLLM state information that is not useful to an attacker. By potentially connecting to this socket many times and not reading data published to them, an attacker can also cause a denial of service by slowing down or potentially blocking the publisher. This issue has been patched in version 0.8.5. |
| Allocation of Resources Without Limits or Throttling in GitHub repository ikus060/rdiffweb prior to 2.5.0. |
| The Flags module in Liferay Portal 7.3.1 and earlier, and Liferay DXP 7.0 before fix pack 96, 7.1 before fix pack 20, and 7.2 before fix pack 5, does not limit the rate at which content can be flagged as inappropriate, which allows remote authenticated users to spam the site administrator with emails |
| The ASN.1 parser in Bouncy Castle Crypto (aka BC Java) 1.63 can trigger a large attempted memory allocation, and resultant OutOfMemoryError error, via crafted ASN.1 data. This is fixed in 1.64. |