| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. |
| A vulnerability has been identified in Polarion V2310 (All versions), Polarion V2404 (All versions < V2404.4). The file upload feature of the affected application improperly sanitizes xml files. This could allow an authenticated remote attacker to conduct a stored cross-site scripting attack by uploading specially crafted xml files that are later downloaded and viewed by other users of the application. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application is vulnerable to memory corruption while parsing specially crafted WRL files. This could allow an attacker to execute code in the context of the current process. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain a use-after-free vulnerability that could be triggered while parsing specially crafted WRL files.
An attacker could leverage this vulnerability to execute code in the context of the current process. |
| A vulnerability has been identified in Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application does not properly restrict access to the file deletion functionality.
This could allow an unauthorized attacker to delete files even when access to the system should be prohibited, resulting in potential data loss or unauthorized modification of system files. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/bpf: Fix bpf_plt pointer arithmetic
Kui-Feng Lee reported a crash on s390x triggered by the
dummy_st_ops/dummy_init_ptr_arg test [1]:
[<0000000000000002>] 0x2
[<00000000009d5cde>] bpf_struct_ops_test_run+0x156/0x250
[<000000000033145a>] __sys_bpf+0xa1a/0xd00
[<00000000003319dc>] __s390x_sys_bpf+0x44/0x50
[<0000000000c4382c>] __do_syscall+0x244/0x300
[<0000000000c59a40>] system_call+0x70/0x98
This is caused by GCC moving memcpy() after assignments in
bpf_jit_plt(), resulting in NULL pointers being written instead of
the return and the target addresses.
Looking at the GCC internals, the reordering is allowed because the
alias analysis thinks that the memcpy() destination and the assignments'
left-hand-sides are based on different objects: new_plt and
bpf_plt_ret/bpf_plt_target respectively, and therefore they cannot
alias.
This is in turn due to a violation of the C standard:
When two pointers are subtracted, both shall point to elements of the
same array object, or one past the last element of the array object
...
From the C's perspective, bpf_plt_ret and bpf_plt are distinct objects
and cannot be subtracted. In the practical terms, doing so confuses the
GCC's alias analysis.
The code was written this way in order to let the C side know a few
offsets defined in the assembly. While nice, this is by no means
necessary. Fix the noncompliance by hardcoding these offsets.
[1] https://lore.kernel.org/bpf/c9923c1d-971d-4022-8dc8-1364e929d34c@gmail.com/ |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.14), Teamcenter Visualization V2312 (All versions < V2312.0010), Teamcenter Visualization V2406 (All versions < V2406.0008), Teamcenter Visualization V2412 (All versions < V2412.0004), Tecnomatix Plant Simulation V2404 (All versions < V2404.0013). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. |
| A vulnerability has been identified in Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected application does not properly restrict the scope of files accessible to the simulation model. This could allow an unauthorized attacker to compromise the confidentiality of the system. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. |
| The Custom MCPs feature is designed to execute OS commands, for instance, using tools like `npx` to spin up local MCP Servers. However, Flowise's inherent authentication and authorization model is minimal and lacks role-based access controls (RBAC). Furthermore, in Flowise versions before 3.0.1 the default installation operates without authentication unless explicitly configured. This combination allows unauthenticated network attackers to execute unsandboxed OS commands. |
| An insecure file system permissions vulnerability in MSP360 Backup 8.0 allows a low privileged user to execute commands with SYSTEM level privileges using a specially crafted file with an arbitrary file backup target. Upgrade to MSP360 Backup 8.1.1.19 (released on 2025-05-15). |
| A vulnerability existed in Thunderbird for Android where potentially sensitive library locations were logged via Logcat. This vulnerability affects Firefox < 138 and Thunderbird < 138. |
| A use-after-free vulnerability exists in the way Foxit Reader 2024.1.0.23997 handles a checkbox field object. A specially crafted Javascript code inside a malicious PDF document can trigger this vulnerability, which can lead to memory corruption and result in arbitrary code execution. An attacker needs to trick the user into opening the malicious file to trigger this vulnerability. Exploitation is also possible if a user visits a specially crafted, malicious site if the browser plugin extension is enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: Fix error cleanup path in nfsd_rename()
Commit a8b0026847b8 ("rename(): avoid a deadlock in the case of parents
having no common ancestor") added an error bail out path. However this
path does not drop the remount protection that has been acquired. Fix
the cleanup path to properly drop the remount protection. |
| Versions of the package semver before 7.5.2 are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.
|
| In the Linux kernel, the following vulnerability has been resolved:
ath5k: fix OOB in ath5k_eeprom_read_pcal_info_5111
The bug was found during fuzzing. Stacktrace locates it in
ath5k_eeprom_convert_pcal_info_5111.
When none of the curve is selected in the loop, idx can go
up to AR5K_EEPROM_N_PD_CURVES. The line makes pd out of bound.
pd = &chinfo[pier].pd_curves[idx];
There are many OOB writes using pd later in the code. So I
added a sanity check for idx. Checks for other loops involving
AR5K_EEPROM_N_PD_CURVES are not needed as the loop index is not
used outside the loops.
The patch is NOT tested with real device.
The following is the fuzzing report
BUG: KASAN: slab-out-of-bounds in ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
Write of size 1 at addr ffff8880174a4d60 by task modprobe/214
CPU: 0 PID: 214 Comm: modprobe Not tainted 5.6.0 #1
Call Trace:
dump_stack+0x76/0xa0
print_address_description.constprop.0+0x16/0x200
? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
__kasan_report.cold+0x37/0x7c
? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
kasan_report+0xe/0x20
ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
? apic_timer_interrupt+0xa/0x20
? ath5k_eeprom_init_11a_pcal_freq+0xbc0/0xbc0 [ath5k]
? ath5k_pci_eeprom_read+0x228/0x3c0 [ath5k]
ath5k_eeprom_init+0x2513/0x6290 [ath5k]
? ath5k_eeprom_init_11a_pcal_freq+0xbc0/0xbc0 [ath5k]
? usleep_range+0xb8/0x100
? apic_timer_interrupt+0xa/0x20
? ath5k_eeprom_read_pcal_info_2413+0x2f20/0x2f20 [ath5k]
ath5k_hw_init+0xb60/0x1970 [ath5k]
ath5k_init_ah+0x6fe/0x2530 [ath5k]
? kasprintf+0xa6/0xe0
? ath5k_stop+0x140/0x140 [ath5k]
? _dev_notice+0xf6/0xf6
? apic_timer_interrupt+0xa/0x20
ath5k_pci_probe.cold+0x29a/0x3d6 [ath5k]
? ath5k_pci_eeprom_read+0x3c0/0x3c0 [ath5k]
? mutex_lock+0x89/0xd0
? ath5k_pci_eeprom_read+0x3c0/0x3c0 [ath5k]
local_pci_probe+0xd3/0x160
pci_device_probe+0x23f/0x3e0
? pci_device_remove+0x280/0x280
? pci_device_remove+0x280/0x280
really_probe+0x209/0x5d0 |
| In the Linux kernel, the following vulnerability has been resolved:
net: tun: fix tun_napi_alloc_frags()
syzbot reported the following crash [1]
Issue came with the blamed commit. Instead of going through
all the iov components, we keep using the first one
and end up with a malformed skb.
[1]
kernel BUG at net/core/skbuff.c:2849 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 0 UID: 0 PID: 6230 Comm: syz-executor132 Not tainted 6.13.0-rc1-syzkaller-00407-g96b6fcc0ee41 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024
RIP: 0010:__pskb_pull_tail+0x1568/0x1570 net/core/skbuff.c:2848
Code: 38 c1 0f 8c 32 f1 ff ff 4c 89 f7 e8 92 96 74 f8 e9 25 f1 ff ff e8 e8 ae 09 f8 48 8b 5c 24 08 e9 eb fb ff ff e8 d9 ae 09 f8 90 <0f> 0b 66 0f 1f 44 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90
RSP: 0018:ffffc90004cbef30 EFLAGS: 00010293
RAX: ffffffff8995c347 RBX: 00000000fffffff2 RCX: ffff88802cf45a00
RDX: 0000000000000000 RSI: 00000000fffffff2 RDI: 0000000000000000
RBP: ffff88807df0c06a R08: ffffffff8995b084 R09: 1ffff1100fbe185c
R10: dffffc0000000000 R11: ffffed100fbe185d R12: ffff888076e85d50
R13: ffff888076e85c80 R14: ffff888076e85cf4 R15: ffff888076e85c80
FS: 00007f0dca6ea6c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0dca6ead58 CR3: 00000000119da000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
skb_cow_data+0x2da/0xcb0 net/core/skbuff.c:5284
tipc_aead_decrypt net/tipc/crypto.c:894 [inline]
tipc_crypto_rcv+0x402/0x24e0 net/tipc/crypto.c:1844
tipc_rcv+0x57e/0x12a0 net/tipc/node.c:2109
tipc_l2_rcv_msg+0x2bd/0x450 net/tipc/bearer.c:668
__netif_receive_skb_list_ptype net/core/dev.c:5720 [inline]
__netif_receive_skb_list_core+0x8b7/0x980 net/core/dev.c:5762
__netif_receive_skb_list net/core/dev.c:5814 [inline]
netif_receive_skb_list_internal+0xa51/0xe30 net/core/dev.c:5905
gro_normal_list include/net/gro.h:515 [inline]
napi_complete_done+0x2b5/0x870 net/core/dev.c:6256
napi_complete include/linux/netdevice.h:567 [inline]
tun_get_user+0x2ea0/0x4890 drivers/net/tun.c:1982
tun_chr_write_iter+0x10d/0x1f0 drivers/net/tun.c:2057
do_iter_readv_writev+0x600/0x880
vfs_writev+0x376/0xba0 fs/read_write.c:1050
do_writev+0x1b6/0x360 fs/read_write.c:1096
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |