| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: txgbe: initialize num_q_vectors for MSI/INTx interrupts
When using MSI/INTx interrupts, wx->num_q_vectors is uninitialized.
Thus there will be kernel panic in wx_alloc_q_vectors() to allocate
queue vectors. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: ASSERT when failing to find index by plane/stream id
[WHY]
find_disp_cfg_idx_by_plane_id and find_disp_cfg_idx_by_stream_id returns
an array index and they return -1 when not found; however, -1 is not a
valid index number.
[HOW]
When this happens, call ASSERT(), and return a positive number (which is
fewer than callers' array size) instead.
This fixes 4 OVERRUN and 2 NEGATIVE_RETURNS issues reported by Coverity. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: always do the basic checks for btrfs_qgroup_inherit structure
[BUG]
Syzbot reports the following regression detected by KASAN:
BUG: KASAN: slab-out-of-bounds in btrfs_qgroup_inherit+0x42e/0x2e20 fs/btrfs/qgroup.c:3277
Read of size 8 at addr ffff88814628ca50 by task syz-executor318/5171
CPU: 0 PID: 5171 Comm: syz-executor318 Not tainted 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
btrfs_qgroup_inherit+0x42e/0x2e20 fs/btrfs/qgroup.c:3277
create_pending_snapshot+0x1359/0x29b0 fs/btrfs/transaction.c:1854
create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1922
btrfs_commit_transaction+0xf20/0x3740 fs/btrfs/transaction.c:2382
create_snapshot+0x6a1/0x9e0 fs/btrfs/ioctl.c:875
btrfs_mksubvol+0x58f/0x710 fs/btrfs/ioctl.c:1029
btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1075
__btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1340
btrfs_ioctl_snap_create_v2+0x1f2/0x3a0 fs/btrfs/ioctl.c:1422
btrfs_ioctl+0x99e/0xc60
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fcbf1992509
RSP: 002b:00007fcbf1928218 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fcbf1a1f618 RCX: 00007fcbf1992509
RDX: 0000000020000280 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 00007fcbf1a1f610 R08: 00007ffea1298e97 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fcbf19eb660
R13: 00000000200002b8 R14: 00007fcbf19e60c0 R15: 0030656c69662f2e
</TASK>
And it also pinned it down to commit b5357cb268c4 ("btrfs: qgroup: do not
check qgroup inherit if qgroup is disabled").
[CAUSE]
That offending commit skips the whole qgroup inherit check if qgroup is
not enabled.
But that also skips the very basic checks like
num_ref_copies/num_excl_copies and the structure size checks.
Meaning if a qgroup enable/disable race is happening at the background,
and we pass a btrfs_qgroup_inherit structure when the qgroup is
disabled, the check would be completely skipped.
Then at the time of transaction commitment, qgroup is re-enabled and
btrfs_qgroup_inherit() is going to use the incorrect structure and
causing the above KASAN error.
[FIX]
Make btrfs_qgroup_check_inherit() only skip the source qgroup checks.
So that even if invalid btrfs_qgroup_inherit structure is passed in, we
can still reject invalid ones no matter if qgroup is enabled or not.
Furthermore we do already have an extra safety inside
btrfs_qgroup_inherit(), which would just ignore invalid qgroup sources,
so even if we only skip the qgroup source check we're still safe. |
| A vulnerability was determined in roncoo roncoo-pay up to 9428382af21cd5568319eae7429b7e1d0332ff40. Affected is an unknown function of the file /user/info/lookupList. Executing manipulation can lead to improper authorization. The attack may be performed from remote. The exploit has been publicly disclosed and may be utilized. This product utilizes a rolling release system for continuous delivery, and as such, version information for affected or updated releases is not disclosed. The vendor was contacted early about this disclosure but did not respond in any way. |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: ohci: prevent leak of left-over IRQ on unbind
Commit 5a95f1ded28691e6 ("firewire: ohci: use devres for requested IRQ")
also removed the call to free_irq() in pci_remove(), leading to a
leftover irq of devm_request_irq() at pci_disable_msi() in pci_remove()
when unbinding the driver from the device
remove_proc_entry: removing non-empty directory 'irq/136', leaking at
least 'firewire_ohci'
Call Trace:
? remove_proc_entry+0x19c/0x1c0
? __warn+0x81/0x130
? remove_proc_entry+0x19c/0x1c0
? report_bug+0x171/0x1a0
? console_unlock+0x78/0x120
? handle_bug+0x3c/0x80
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? remove_proc_entry+0x19c/0x1c0
unregister_irq_proc+0xf4/0x120
free_desc+0x3d/0xe0
? kfree+0x29f/0x2f0
irq_free_descs+0x47/0x70
msi_domain_free_locked.part.0+0x19d/0x1d0
msi_domain_free_irqs_all_locked+0x81/0xc0
pci_free_msi_irqs+0x12/0x40
pci_disable_msi+0x4c/0x60
pci_remove+0x9d/0xc0 [firewire_ohci
01b483699bebf9cb07a3d69df0aa2bee71db1b26]
pci_device_remove+0x37/0xa0
device_release_driver_internal+0x19f/0x200
unbind_store+0xa1/0xb0
remove irq with devm_free_irq() before pci_disable_msi()
also remove it in fail_msi: of pci_probe() as this would lead to
an identical leak |
| In the Linux kernel, the following vulnerability has been resolved:
clk: sunxi-ng: common: Don't call hw_to_ccu_common on hw without common
In order to set the rate range of a hw sunxi_ccu_probe calls
hw_to_ccu_common() assuming all entries in desc->ccu_clks are contained
in a ccu_common struct. This assumption is incorrect and, in
consequence, causes invalid pointer de-references.
Remove the faulty call. Instead, add one more loop that iterates over
the ccu_clks and sets the rate range, if required. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: amdgpu_ttm_gart_bind set gtt bound flag
Otherwise after the GTT bo is released, the GTT and gart space is freed
but amdgpu_ttm_backend_unbind will not clear the gart page table entry
and leave valid mapping entry pointing to the stale system page. Then
if GPU access the gart address mistakely, it will read undefined value
instead page fault, harder to debug and reproduce the real issue. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Define the __io_aw() hook as mmiowb()
Commit fb24ea52f78e0d595852e ("drivers: Remove explicit invocations of
mmiowb()") remove all mmiowb() in drivers, but it says:
"NOTE: mmiowb() has only ever guaranteed ordering in conjunction with
spin_unlock(). However, pairing each mmiowb() removal in this patch with
the corresponding call to spin_unlock() is not at all trivial, so there
is a small chance that this change may regress any drivers incorrectly
relying on mmiowb() to order MMIO writes between CPUs using lock-free
synchronisation."
The mmio in radeon_ring_commit() is protected by a mutex rather than a
spinlock, but in the mutex fastpath it behaves similar to spinlock. We
can add mmiowb() calls in the radeon driver but the maintainer says he
doesn't like such a workaround, and radeon is not the only example of
mutex protected mmio.
So we should extend the mmiowb tracking system from spinlock to mutex,
and maybe other locking primitives. This is not easy and error prone, so
we solve it in the architectural code, by simply defining the __io_aw()
hook as mmiowb(). And we no longer need to override queued_spin_unlock()
so use the generic definition.
Without this, we get such an error when run 'glxgears' on weak ordering
architectures such as LoongArch:
radeon 0000:04:00.0: ring 0 stalled for more than 10324msec
radeon 0000:04:00.0: ring 3 stalled for more than 10240msec
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000001f412 last fence id 0x000000000001f414 on ring 3)
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000000f940 last fence id 0x000000000000f941 on ring 0)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) |
| Unitree Go2, G1, H1, and B2 devices through 2025-09-20 accept any handshake secret with the unitree substring. |
| Delta Electronics DIALink has an Directory Traversal Authentication Bypass Vulnerability. |
| Delta Electronics DIALink has an Directory Traversal Authentication Bypass Vulnerability. |
| A security vulnerability has been detected in UTT 1200GW and 1250GW up to 3.0.0-170831/3.2.2-200710. This vulnerability affects unknown code of the file /goform/formApMail. The manipulation of the argument senderEmail leads to buffer overflow. The attack may be initiated remotely. The exploit has been disclosed publicly and may be used. The vendor was contacted early about this disclosure but did not respond in any way. |
| A vulnerability exists in the 'counterpart' library for Node.js and the browser due to insufficient sanitization of user-controlled input in translation key processing. The affected versions prior to 0.18.6 allow attackers to manipulate the library's translation functionality by supplying maliciously crafted keys containing prototype chain elements (e.g., __proto__ ), leading to prototype pollution. This weakness enables adversaries to inject arbitrary properties into the JavaScript Object prototype through the first parameter of the translate method when combined with specific separator configurations, potentially resulting in denial-of-service conditions or remote code execution in vulnerable applications. The issue arises from the library's failure to properly validate or neutralize special characters in translation key inputs before processing. |
| A vulnerability exists in the 'min-document' package prior to version 2.19.0, stemming from improper handling of namespace operations in the removeAttributeNS method. By processing malicious input involving the __proto__ property, an attacker can manipulate the prototype chain of JavaScript objects, leading to denial of service or arbitrary code execution. This issue arises from insufficient validation of attribute namespace removal operations, allowing unintended modification of critical object prototypes. The vulnerability remains unaddressed in the latest available version. |
| A prototype pollution vulnerability exists in the ts-fns package versions prior to 13.0.7, where insufficient validation of user-provided keys in the assign function allows attackers to manipulate the Object.prototype chain. By leveraging this flaw, adversaries may inject arbitrary properties into the global object's prototype, potentially leading to application crashes, unexpected code execution behaviors, or bypasses of security-critical validation logic dependent on prototype integrity. The vulnerability stems from improper handling of deep property assignment operations within the library's public API functions. This issue remains unaddressed in the latest available version. |
| Llama Stack prior to version v0.2.20 accepted unverified parameters in the resolve_ast_by_type function which could potentially allow for remote code execution. |
| Improper Protection Against Voltage and Clock Glitches in FPGA devices, could allow an attacker with physical access to undervolt the platform resulting in a loss of confidentiality. |
| SQL injection vulnerability in Prevengos v2.44 by Nedatec Consulting. This vulnerability allows an attacker to retrieve, create, update, and delete databases by sending a POST request using the parameters “mpsCentroin”, “mpsEmpresa”, “mpsProyecto”, and “mpsContrata” in “/servicios/autorizaciones.asmx/mfsRecuperarListado”. |
| A security flaw has been discovered in geyang ml-logger up to acf255bade5be6ad88d90735c8367b28cbe3a743. Affected by this issue is the function stream_handler of the file ml_logger/server.py of the component File Handler. Performing manipulation of the argument key results in information disclosure. The attack can be initiated remotely. The exploit has been released to the public and may be exploited. Continious delivery with rolling releases is used by this product. Therefore, no version details of affected nor updated releases are available. |
| A vulnerability was determined in geyang ml-logger up to acf255bade5be6ad88d90735c8367b28cbe3a743. Affected is the function log_handler of the file ml_logger/server.py of the component Ping Handler. This manipulation of the argument data causes deserialization. It is possible to initiate the attack remotely. The exploit has been publicly disclosed and may be utilized. This product is using a rolling release to provide continious delivery. Therefore, no version details for affected nor updated releases are available. |