| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
rcu/kvfree: Fix data-race in __mod_timer / kvfree_call_rcu
KCSAN reports a data race when access the krcp->monitor_work.timer.expires
variable in the schedule_delayed_monitor_work() function:
<snip>
BUG: KCSAN: data-race in __mod_timer / kvfree_call_rcu
read to 0xffff888237d1cce8 of 8 bytes by task 10149 on cpu 1:
schedule_delayed_monitor_work kernel/rcu/tree.c:3520 [inline]
kvfree_call_rcu+0x3b8/0x510 kernel/rcu/tree.c:3839
trie_update_elem+0x47c/0x620 kernel/bpf/lpm_trie.c:441
bpf_map_update_value+0x324/0x350 kernel/bpf/syscall.c:203
generic_map_update_batch+0x401/0x520 kernel/bpf/syscall.c:1849
bpf_map_do_batch+0x28c/0x3f0 kernel/bpf/syscall.c:5143
__sys_bpf+0x2e5/0x7a0
__do_sys_bpf kernel/bpf/syscall.c:5741 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5739 [inline]
__x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5739
x64_sys_call+0x2625/0x2d60 arch/x86/include/generated/asm/syscalls_64.h:322
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xc9/0x1c0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
write to 0xffff888237d1cce8 of 8 bytes by task 56 on cpu 0:
__mod_timer+0x578/0x7f0 kernel/time/timer.c:1173
add_timer_global+0x51/0x70 kernel/time/timer.c:1330
__queue_delayed_work+0x127/0x1a0 kernel/workqueue.c:2523
queue_delayed_work_on+0xdf/0x190 kernel/workqueue.c:2552
queue_delayed_work include/linux/workqueue.h:677 [inline]
schedule_delayed_monitor_work kernel/rcu/tree.c:3525 [inline]
kfree_rcu_monitor+0x5e8/0x660 kernel/rcu/tree.c:3643
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0x483/0x9a0 kernel/workqueue.c:3310
worker_thread+0x51d/0x6f0 kernel/workqueue.c:3391
kthread+0x1d1/0x210 kernel/kthread.c:389
ret_from_fork+0x4b/0x60 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 UID: 0 PID: 56 Comm: kworker/u8:4 Not tainted 6.12.0-rc2-syzkaller-00050-g5b7c893ed5ed #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: events_unbound kfree_rcu_monitor
<snip>
kfree_rcu_monitor() rearms the work if a "krcp" has to be still
offloaded and this is done without holding krcp->lock, whereas
the kvfree_call_rcu() holds it.
Fix it by acquiring the "krcp->lock" for kfree_rcu_monitor() so
both functions do not race anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix out-of-bounds access of directory entries
In the case of the directory size is greater than or equal to
the cluster size, if start_clu becomes an EOF cluster(an invalid
cluster) due to file system corruption, then the directory entry
where ei->hint_femp.eidx hint is outside the directory, resulting
in an out-of-bounds access, which may cause further file system
corruption.
This commit adds a check for start_clu, if it is an invalid cluster,
the file or directory will be treated as empty. |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: fix cacheflush with PAN
It seems that the cacheflush syscall got broken when PAN for LPAE was
implemented. User access was not enabled around the cache maintenance
instructions, causing them to fault. |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx93-blk-ctrl: correct remove path
The check condition should be 'i < bc->onecell_data.num_domains', not
'bc->onecell_data.num_domains' which will make the look never finish
and cause kernel panic.
Also disable runtime to address
"imx93-blk-ctrl 4ac10000.system-controller: Unbalanced pm_runtime_enable!" |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Handle dml allocation failure to avoid crash
[Why]
In the case where a dml allocation fails for any reason, the
current state's dml contexts would no longer be valid. Then
subsequent calls dc_state_copy_internal would shallow copy
invalid memory and if the new state was released, a double
free would occur.
[How]
Reset dml pointers in new_state to NULL and avoid invalid
pointer
(cherry picked from commit bcafdc61529a48f6f06355d78eb41b3aeda5296c) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/oa: Fix "Missing outer runtime PM protection" warning
Fix the following drm_WARN:
[953.586396] xe 0000:00:02.0: [drm] Missing outer runtime PM protection
...
<4> [953.587090] ? xe_pm_runtime_get_noresume+0x8d/0xa0 [xe]
<4> [953.587208] guc_exec_queue_add_msg+0x28/0x130 [xe]
<4> [953.587319] guc_exec_queue_fini+0x3a/0x40 [xe]
<4> [953.587425] xe_exec_queue_destroy+0xb3/0xf0 [xe]
<4> [953.587515] xe_oa_release+0x9c/0xc0 [xe]
(cherry picked from commit b107c63d2953907908fd0cafb0e543b3c3167b75) |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa: solidrun: Fix UB bug with devres
In psnet_open_pf_bar() and snet_open_vf_bar() a string later passed to
pcim_iomap_regions() is placed on the stack. Neither
pcim_iomap_regions() nor the functions it calls copy that string.
Should the string later ever be used, this, consequently, causes
undefined behavior since the stack frame will by then have disappeared.
Fix the bug by allocating the strings on the heap through
devm_kasprintf(). |
| In the Linux kernel, the following vulnerability has been resolved:
vsock: Fix sk_error_queue memory leak
Kernel queues MSG_ZEROCOPY completion notifications on the error queue.
Where they remain, until explicitly recv()ed. To prevent memory leaks,
clean up the queue when the socket is destroyed.
unreferenced object 0xffff8881028beb00 (size 224):
comm "vsock_test", pid 1218, jiffies 4294694897
hex dump (first 32 bytes):
90 b0 21 17 81 88 ff ff 90 b0 21 17 81 88 ff ff ..!.......!.....
00 00 00 00 00 00 00 00 00 b0 21 17 81 88 ff ff ..........!.....
backtrace (crc 6c7031ca):
[<ffffffff81418ef7>] kmem_cache_alloc_node_noprof+0x2f7/0x370
[<ffffffff81d35882>] __alloc_skb+0x132/0x180
[<ffffffff81d2d32b>] sock_omalloc+0x4b/0x80
[<ffffffff81d3a8ae>] msg_zerocopy_realloc+0x9e/0x240
[<ffffffff81fe5cb2>] virtio_transport_send_pkt_info+0x412/0x4c0
[<ffffffff81fe6183>] virtio_transport_stream_enqueue+0x43/0x50
[<ffffffff81fe0813>] vsock_connectible_sendmsg+0x373/0x450
[<ffffffff81d233d5>] ____sys_sendmsg+0x365/0x3a0
[<ffffffff81d246f4>] ___sys_sendmsg+0x84/0xd0
[<ffffffff81d26f47>] __sys_sendmsg+0x47/0x80
[<ffffffff820d3df3>] do_syscall_64+0x93/0x180
[<ffffffff8220012b>] entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
virtio/vsock: Improve MSG_ZEROCOPY error handling
Add a missing kfree_skb() to prevent memory leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix handling of partial GPU mapping of BOs
This commit fixes the bug in the handling of partial mapping of the
buffer objects to the GPU, which caused kernel warnings.
Panthor didn't correctly handle the case where the partial mapping
spanned multiple scatterlists and the mapping offset didn't point
to the 1st page of starting scatterlist. The offset variable was
not cleared after reaching the starting scatterlist.
Following warning messages were seen.
WARNING: CPU: 1 PID: 650 at drivers/iommu/io-pgtable-arm.c:659 __arm_lpae_unmap+0x254/0x5a0
<snip>
pc : __arm_lpae_unmap+0x254/0x5a0
lr : __arm_lpae_unmap+0x2cc/0x5a0
<snip>
Call trace:
__arm_lpae_unmap+0x254/0x5a0
__arm_lpae_unmap+0x108/0x5a0
__arm_lpae_unmap+0x108/0x5a0
__arm_lpae_unmap+0x108/0x5a0
arm_lpae_unmap_pages+0x80/0xa0
panthor_vm_unmap_pages+0xac/0x1c8 [panthor]
panthor_gpuva_sm_step_unmap+0x4c/0xc8 [panthor]
op_unmap_cb.isra.23.constprop.30+0x54/0x80
__drm_gpuvm_sm_unmap+0x184/0x1c8
drm_gpuvm_sm_unmap+0x40/0x60
panthor_vm_exec_op+0xa8/0x120 [panthor]
panthor_vm_bind_exec_sync_op+0xc4/0xe8 [panthor]
panthor_ioctl_vm_bind+0x10c/0x170 [panthor]
drm_ioctl_kernel+0xbc/0x138
drm_ioctl+0x210/0x4b0
__arm64_sys_ioctl+0xb0/0xf8
invoke_syscall+0x4c/0x110
el0_svc_common.constprop.1+0x98/0xf8
do_el0_svc+0x24/0x38
el0_svc+0x34/0xc8
el0t_64_sync_handler+0xa0/0xc8
el0t_64_sync+0x174/0x178
<snip>
panthor : [drm] drm_WARN_ON(unmapped_sz != pgsize * pgcount)
WARNING: CPU: 1 PID: 650 at drivers/gpu/drm/panthor/panthor_mmu.c:922 panthor_vm_unmap_pages+0x124/0x1c8 [panthor]
<snip>
pc : panthor_vm_unmap_pages+0x124/0x1c8 [panthor]
lr : panthor_vm_unmap_pages+0x124/0x1c8 [panthor]
<snip>
panthor : [drm] *ERROR* failed to unmap range ffffa388f000-ffffa3890000 (requested range ffffa388c000-ffffa3890000) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: avoid null_ptr_deref in vmw_framebuffer_surface_create_handle
The 'vmw_user_object_buffer' function may return NULL with incorrect
inputs. To avoid possible null pointer dereference, add a check whether
the 'bo' is NULL in the vmw_framebuffer_surface_create_handle. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mremap: fix address wraparound in move_page_tables()
On 32-bit platforms, it is possible for the expression `len + old_addr <
old_end` to be false-positive if `len + old_addr` wraps around.
`old_addr` is the cursor in the old range up to which page table entries
have been moved; so if the operation succeeded, `old_addr` is the *end* of
the old region, and adding `len` to it can wrap.
The overflow causes mremap() to mistakenly believe that PTEs have been
copied; the consequence is that mremap() bails out, but doesn't move the
PTEs back before the new VMA is unmapped, causing anonymous pages in the
region to be lost. So basically if userspace tries to mremap() a
private-anon region and hits this bug, mremap() will return an error and
the private-anon region's contents appear to have been zeroed.
The idea of this check is that `old_end - len` is the original start
address, and writing the check that way also makes it easier to read; so
fix the check by rearranging the comparison accordingly.
(An alternate fix would be to refactor this function by introducing an
"orig_old_start" variable or such.)
Tested in a VM with a 32-bit X86 kernel; without the patch:
```
user@horn:~/big_mremap$ cat test.c
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <err.h>
#include <sys/mman.h>
#define ADDR1 ((void*)0x60000000)
#define ADDR2 ((void*)0x10000000)
#define SIZE 0x50000000uL
int main(void) {
unsigned char *p1 = mmap(ADDR1, SIZE, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0);
if (p1 == MAP_FAILED)
err(1, "mmap 1");
unsigned char *p2 = mmap(ADDR2, SIZE, PROT_NONE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0);
if (p2 == MAP_FAILED)
err(1, "mmap 2");
*p1 = 0x41;
printf("first char is 0x%02hhx\n", *p1);
unsigned char *p3 = mremap(p1, SIZE, SIZE,
MREMAP_MAYMOVE|MREMAP_FIXED, p2);
if (p3 == MAP_FAILED) {
printf("mremap() failed; first char is 0x%02hhx\n", *p1);
} else {
printf("mremap() succeeded; first char is 0x%02hhx\n", *p3);
}
}
user@horn:~/big_mremap$ gcc -static -o test test.c
user@horn:~/big_mremap$ setarch -R ./test
first char is 0x41
mremap() failed; first char is 0x00
```
With the patch:
```
user@horn:~/big_mremap$ setarch -R ./test
first char is 0x41
mremap() succeeded; first char is 0x41
``` |
| In the Linux kernel, the following vulnerability has been resolved:
nommu: pass NULL argument to vma_iter_prealloc()
When deleting a vma entry from a maple tree, it has to pass NULL to
vma_iter_prealloc() in order to calculate internal state of the tree, but
it passed a wrong argument. As a result, nommu kernels crashed upon
accessing a vma iterator, such as acct_collect() reading the size of vma
entries after do_munmap().
This commit fixes this issue by passing a right argument to the
preallocation call. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Adjust VSDB parser for replay feature
At some point, the IEEE ID identification for the replay check in the
AMD EDID was added. However, this check causes the following
out-of-bounds issues when using KASAN:
[ 27.804016] BUG: KASAN: slab-out-of-bounds in amdgpu_dm_update_freesync_caps+0xefa/0x17a0 [amdgpu]
[ 27.804788] Read of size 1 at addr ffff8881647fdb00 by task systemd-udevd/383
...
[ 27.821207] Memory state around the buggy address:
[ 27.821215] ffff8881647fda00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 27.821224] ffff8881647fda80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 27.821234] >ffff8881647fdb00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 27.821243] ^
[ 27.821250] ffff8881647fdb80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[ 27.821259] ffff8881647fdc00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[ 27.821268] ==================================================================
This is caused because the ID extraction happens outside of the range of
the edid lenght. This commit addresses this issue by considering the
amd_vsdb_block size.
(cherry picked from commit b7e381b1ccd5e778e3d9c44c669ad38439a861d8) |
| In the Linux kernel, the following vulnerability has been resolved:
fs/proc/task_mmu: prevent integer overflow in pagemap_scan_get_args()
The "arg->vec_len" variable is a u64 that comes from the user at the start
of the function. The "arg->vec_len * sizeof(struct page_region))"
multiplication can lead to integer wrapping. Use size_mul() to avoid
that.
Also the size_add/mul() functions work on unsigned long so for 32bit
systems we need to ensure that "arg->vec_len" fits in an unsigned long. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/ufence: Prefetch ufence addr to catch bogus address
access_ok() only checks for addr overflow so also try to read the addr
to catch invalid addr sent from userspace.
(cherry picked from commit 9408c4508483ffc60811e910a93d6425b8e63928) |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Add sendpage_ok() check to disable MSG_SPLICE_PAGES
While running ISER over SIW, the initiator machine encounters a warning
from skb_splice_from_iter() indicating that a slab page is being used in
send_page. To address this, it is better to add a sendpage_ok() check
within the driver itself, and if it returns 0, then MSG_SPLICE_PAGES flag
should be disabled before entering the network stack.
A similar issue has been discussed for NVMe in this thread:
https://lore.kernel.org/all/20240530142417.146696-1-ofir.gal@volumez.com/
WARNING: CPU: 0 PID: 5342 at net/core/skbuff.c:7140 skb_splice_from_iter+0x173/0x320
Call Trace:
tcp_sendmsg_locked+0x368/0xe40
siw_tx_hdt+0x695/0xa40 [siw]
siw_qp_sq_process+0x102/0xb00 [siw]
siw_sq_resume+0x39/0x110 [siw]
siw_run_sq+0x74/0x160 [siw]
kthread+0xd2/0x100
ret_from_fork+0x34/0x40
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_pci: Fix admin vq cleanup by using correct info pointer
vp_modern_avq_cleanup() and vp_del_vqs() clean up admin vq
resources by virtio_pci_vq_info pointer. The info pointer of admin
vq is stored in vp_dev->admin_vq.info instead of vp_dev->vqs[].
Using the info pointer from vp_dev->vqs[] for admin vq causes a
kernel NULL pointer dereference bug.
In vp_modern_avq_cleanup() and vp_del_vqs(), get the info pointer
from vp_dev->admin_vq.info for admin vq to clean up the resources.
Also make info ptr as argument of vp_del_vq() to be symmetric with
vp_setup_vq().
vp_reset calls vp_modern_avq_cleanup, and causes the Call Trace:
==================================================================
BUG: kernel NULL pointer dereference, address:0000000000000000
...
CPU: 49 UID: 0 PID: 4439 Comm: modprobe Not tainted 6.11.0-rc5 #1
RIP: 0010:vp_reset+0x57/0x90 [virtio_pci]
Call Trace:
<TASK>
...
? vp_reset+0x57/0x90 [virtio_pci]
? vp_reset+0x38/0x90 [virtio_pci]
virtio_reset_device+0x1d/0x30
remove_vq_common+0x1c/0x1a0 [virtio_net]
virtnet_remove+0xa1/0xc0 [virtio_net]
virtio_dev_remove+0x46/0xa0
...
virtio_pci_driver_exit+0x14/0x810 [virtio_pci]
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Add sk_is_inet and IS_ICSK check in tls_sw_has_ctx_tx/rx
As the introduction of the support for vsock and unix sockets in sockmap,
tls_sw_has_ctx_tx/rx cannot presume the socket passed in must be IS_ICSK.
vsock and af_unix sockets have vsock_sock and unix_sock instead of
inet_connection_sock. For these sockets, tls_get_ctx may return an invalid
pointer and cause page fault in function tls_sw_ctx_rx.
BUG: unable to handle page fault for address: 0000000000040030
Workqueue: vsock-loopback vsock_loopback_work
RIP: 0010:sk_psock_strp_data_ready+0x23/0x60
Call Trace:
? __die+0x81/0xc3
? no_context+0x194/0x350
? do_page_fault+0x30/0x110
? async_page_fault+0x3e/0x50
? sk_psock_strp_data_ready+0x23/0x60
virtio_transport_recv_pkt+0x750/0x800
? update_load_avg+0x7e/0x620
vsock_loopback_work+0xd0/0x100
process_one_work+0x1a7/0x360
worker_thread+0x30/0x390
? create_worker+0x1a0/0x1a0
kthread+0x112/0x130
? __kthread_cancel_work+0x40/0x40
ret_from_fork+0x1f/0x40
v2:
- Add IS_ICSK check
v3:
- Update the commits in Fixes |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Mark hrtimer to expire in hard interrupt context
Like commit 2c0d278f3293f ("KVM: LAPIC: Mark hrtimer to expire in hard
interrupt context") and commit 9090825fa9974 ("KVM: arm/arm64: Let the
timer expire in hardirq context on RT"), On PREEMPT_RT enabled kernels
unmarked hrtimers are moved into soft interrupt expiry mode by default.
Then the timers are canceled from an preempt-notifier which is invoked
with disabled preemption which is not allowed on PREEMPT_RT.
The timer callback is short so in could be invoked in hard-IRQ context.
So let the timer expire on hard-IRQ context even on -RT.
This fix a "scheduling while atomic" bug for PREEMPT_RT enabled kernels:
BUG: scheduling while atomic: qemu-system-loo/1011/0x00000002
Modules linked in: amdgpu rfkill nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat ns
CPU: 1 UID: 0 PID: 1011 Comm: qemu-system-loo Tainted: G W 6.12.0-rc2+ #1774
Tainted: [W]=WARN
Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022
Stack : ffffffffffffffff 0000000000000000 9000000004e3ea38 9000000116744000
90000001167475a0 0000000000000000 90000001167475a8 9000000005644830
90000000058dc000 90000000058dbff8 9000000116747420 0000000000000001
0000000000000001 6a613fc938313980 000000000790c000 90000001001c1140
00000000000003fe 0000000000000001 000000000000000d 0000000000000003
0000000000000030 00000000000003f3 000000000790c000 9000000116747830
90000000057ef000 0000000000000000 9000000005644830 0000000000000004
0000000000000000 90000000057f4b58 0000000000000001 9000000116747868
900000000451b600 9000000005644830 9000000003a13998 0000000010000020
00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d
...
Call Trace:
[<9000000003a13998>] show_stack+0x38/0x180
[<9000000004e3ea34>] dump_stack_lvl+0x84/0xc0
[<9000000003a71708>] __schedule_bug+0x48/0x60
[<9000000004e45734>] __schedule+0x1114/0x1660
[<9000000004e46040>] schedule_rtlock+0x20/0x60
[<9000000004e4e330>] rtlock_slowlock_locked+0x3f0/0x10a0
[<9000000004e4f038>] rt_spin_lock+0x58/0x80
[<9000000003b02d68>] hrtimer_cancel_wait_running+0x68/0xc0
[<9000000003b02e30>] hrtimer_cancel+0x70/0x80
[<ffff80000235eb70>] kvm_restore_timer+0x50/0x1a0 [kvm]
[<ffff8000023616c8>] kvm_arch_vcpu_load+0x68/0x2a0 [kvm]
[<ffff80000234c2d4>] kvm_sched_in+0x34/0x60 [kvm]
[<9000000003a749a0>] finish_task_switch.isra.0+0x140/0x2e0
[<9000000004e44a70>] __schedule+0x450/0x1660
[<9000000004e45cb0>] schedule+0x30/0x180
[<ffff800002354c70>] kvm_vcpu_block+0x70/0x120 [kvm]
[<ffff800002354d80>] kvm_vcpu_halt+0x60/0x3e0 [kvm]
[<ffff80000235b194>] kvm_handle_gspr+0x3f4/0x4e0 [kvm]
[<ffff80000235f548>] kvm_handle_exit+0x1c8/0x260 [kvm] |