| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: af_alg - zero initialize memory allocated via sock_kmalloc
Several crypto user API contexts and requests allocated with
sock_kmalloc() were left uninitialized, relying on callers to
set fields explicitly. This resulted in the use of uninitialized
data in certain error paths or when new fields are added in the
future.
The ACVP patches also contain two user-space interface files:
algif_kpp.c and algif_akcipher.c. These too rely on proper
initialization of their context structures.
A particular issue has been observed with the newly added
'inflight' variable introduced in af_alg_ctx by commit:
67b164a871af ("crypto: af_alg - Disallow multiple in-flight AIO requests")
Because the context is not memset to zero after allocation,
the inflight variable has contained garbage values. As a result,
af_alg_alloc_areq() has incorrectly returned -EBUSY randomly when
the garbage value was interpreted as true:
https://github.com/gregkh/linux/blame/master/crypto/af_alg.c#L1209
The check directly tests ctx->inflight without explicitly
comparing against true/false. Since inflight is only ever set to
true or false later, an uninitialized value has triggered
-EBUSY failures. Zero-initializing memory allocated with
sock_kmalloc() ensures inflight and other fields start in a known
state, removing random issues caused by uninitialized data. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: reset KASAN tag in defer_free() before accessing freed memory
When CONFIG_SLUB_TINY is enabled, kfree_nolock() calls kasan_slab_free()
before defer_free(). On ARM64 with MTE (Memory Tagging Extension),
kasan_slab_free() poisons the memory and changes the tag from the
original (e.g., 0xf3) to a poison tag (0xfe).
When defer_free() then tries to write to the freed object to build the
deferred free list via llist_add(), the pointer still has the old tag,
causing a tag mismatch and triggering a KASAN use-after-free report:
BUG: KASAN: slab-use-after-free in defer_free+0x3c/0xbc mm/slub.c:6537
Write at addr f3f000000854f020 by task kworker/u8:6/983
Pointer tag: [f3], memory tag: [fe]
Fix this by calling kasan_reset_tag() before accessing the freed memory.
This is safe because defer_free() is part of the allocator itself and is
expected to manipulate freed memory for bookkeeping purposes. |
| In the Linux kernel, the following vulnerability has been resolved:
cpuset: fix warning when disabling remote partition
A warning was triggered as follows:
WARNING: kernel/cgroup/cpuset.c:1651 at remote_partition_disable+0xf7/0x110
RIP: 0010:remote_partition_disable+0xf7/0x110
RSP: 0018:ffffc90001947d88 EFLAGS: 00000206
RAX: 0000000000007fff RBX: ffff888103b6e000 RCX: 0000000000006f40
RDX: 0000000000006f00 RSI: ffffc90001947da8 RDI: ffff888103b6e000
RBP: ffff888103b6e000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: ffff88810b2e2728 R12: ffffc90001947da8
R13: 0000000000000000 R14: ffffc90001947da8 R15: ffff8881081f1c00
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f55c8bbe0b2 CR3: 000000010b14c000 CR4: 00000000000006f0
Call Trace:
<TASK>
update_prstate+0x2d3/0x580
cpuset_partition_write+0x94/0xf0
kernfs_fop_write_iter+0x147/0x200
vfs_write+0x35d/0x500
ksys_write+0x66/0xe0
do_syscall_64+0x6b/0x390
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f55c8cd4887
Reproduction steps (on a 16-CPU machine):
# cd /sys/fs/cgroup/
# mkdir A1
# echo +cpuset > A1/cgroup.subtree_control
# echo "0-14" > A1/cpuset.cpus.exclusive
# mkdir A1/A2
# echo "0-14" > A1/A2/cpuset.cpus.exclusive
# echo "root" > A1/A2/cpuset.cpus.partition
# echo 0 > /sys/devices/system/cpu/cpu15/online
# echo member > A1/A2/cpuset.cpus.partition
When CPU 15 is offlined, subpartitions_cpus gets cleared because no CPUs
remain available for the top_cpuset, forcing partitions to share CPUs with
the top_cpuset. In this scenario, disabling the remote partition triggers
a warning stating that effective_xcpus is not a subset of
subpartitions_cpus. Partitions should be invalidated in this case to
inform users that the partition is now invalid(cpus are shared with
top_cpuset).
To fix this issue:
1. Only emit the warning only if subpartitions_cpus is not empty and the
effective_xcpus is not a subset of subpartitions_cpus.
2. During the CPU hotplug process, invalidate partitions if
subpartitions_cpus is empty. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: Use spinlock for context list protection lock
Previously a mutex was added to protect the encoder and decoder context
lists from unexpected changes originating from the SCP IP block, causing
the context pointer to go invalid, resulting in a NULL pointer
dereference in the IPI handler.
Turns out on the MT8173, the VPU IPI handler is called from hard IRQ
context. This causes a big warning from the scheduler. This was first
reported downstream on the ChromeOS kernels, but is also reproducible
on mainline using Fluster with the FFmpeg v4l2m2m decoders. Even though
the actual capture format is not supported, the affected code paths
are triggered.
Since this lock just protects the context list and operations on it are
very fast, it should be OK to switch to a spinlock. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: avoid invalid read in irdma_net_event
irdma_net_event() should not dereference anything from "neigh" (alias
"ptr") until it has checked that the event is NETEVENT_NEIGH_UPDATE.
Other events come with different structures pointed to by "ptr" and they
may be smaller than struct neighbour.
Move the read of neigh->dev under the NETEVENT_NEIGH_UPDATE case.
The bug is mostly harmless, but it triggers KASAN on debug kernels:
BUG: KASAN: stack-out-of-bounds in irdma_net_event+0x32e/0x3b0 [irdma]
Read of size 8 at addr ffffc900075e07f0 by task kworker/27:2/542554
CPU: 27 PID: 542554 Comm: kworker/27:2 Kdump: loaded Not tainted 5.14.0-630.el9.x86_64+debug #1
Hardware name: [...]
Workqueue: events rt6_probe_deferred
Call Trace:
<IRQ>
dump_stack_lvl+0x60/0xb0
print_address_description.constprop.0+0x2c/0x3f0
print_report+0xb4/0x270
kasan_report+0x92/0xc0
irdma_net_event+0x32e/0x3b0 [irdma]
notifier_call_chain+0x9e/0x180
atomic_notifier_call_chain+0x5c/0x110
rt6_do_redirect+0xb91/0x1080
tcp_v6_err+0xe9b/0x13e0
icmpv6_notify+0x2b2/0x630
ndisc_redirect_rcv+0x328/0x530
icmpv6_rcv+0xc16/0x1360
ip6_protocol_deliver_rcu+0xb84/0x12e0
ip6_input_finish+0x117/0x240
ip6_input+0xc4/0x370
ipv6_rcv+0x420/0x7d0
__netif_receive_skb_one_core+0x118/0x1b0
process_backlog+0xd1/0x5d0
__napi_poll.constprop.0+0xa3/0x440
net_rx_action+0x78a/0xba0
handle_softirqs+0x2d4/0x9c0
do_softirq+0xad/0xe0
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
smc91x: fix broken irq-context in PREEMPT_RT
When smc91x.c is built with PREEMPT_RT, the following splat occurs
in FVP_RevC:
[ 13.055000] smc91x LNRO0003:00 eth0: link up, 10Mbps, half-duplex, lpa 0x0000
[ 13.062137] BUG: workqueue leaked atomic, lock or RCU: kworker/2:1[106]
[ 13.062137] preempt=0x00000000 lock=0->0 RCU=0->1 workfn=mld_ifc_work
[ 13.062266] C
** replaying previous printk message **
[ 13.062266] CPU: 2 UID: 0 PID: 106 Comm: kworker/2:1 Not tainted 6.18.0-dirty #179 PREEMPT_{RT,(full)}
[ 13.062353] Hardware name: , BIOS
[ 13.062382] Workqueue: mld mld_ifc_work
[ 13.062469] Call trace:
[ 13.062494] show_stack+0x24/0x40 (C)
[ 13.062602] __dump_stack+0x28/0x48
[ 13.062710] dump_stack_lvl+0x7c/0xb0
[ 13.062818] dump_stack+0x18/0x34
[ 13.062926] process_scheduled_works+0x294/0x450
[ 13.063043] worker_thread+0x260/0x3d8
[ 13.063124] kthread+0x1c4/0x228
[ 13.063235] ret_from_fork+0x10/0x20
This happens because smc_special_trylock() disables IRQs even on PREEMPT_RT,
but smc_special_unlock() does not restore IRQs on PREEMPT_RT.
The reason is that smc_special_unlock() calls spin_unlock_irqrestore(),
and rcu_read_unlock_bh() in __dev_queue_xmit() cannot invoke
rcu_read_unlock() through __local_bh_enable_ip() when current->softirq_disable_cnt becomes zero.
To address this issue, replace smc_special_trylock() with spin_trylock_irqsave(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gem: Zero-initialize the eb.vma array in i915_gem_do_execbuffer
Initialize the eb.vma array with values of 0 when the eb structure is
first set up. In particular, this sets the eb->vma[i].vma pointers to
NULL, simplifying cleanup and getting rid of the bug described below.
During the execution of eb_lookup_vmas(), the eb->vma array is
successively filled up with struct eb_vma objects. This process includes
calling eb_add_vma(), which might fail; however, even in the event of
failure, eb->vma[i].vma is set for the currently processed buffer.
If eb_add_vma() fails, eb_lookup_vmas() returns with an error, which
prompts a call to eb_release_vmas() to clean up the mess. Since
eb_lookup_vmas() might fail during processing any (possibly not first)
buffer, eb_release_vmas() checks whether a buffer's vma is NULL to know
at what point did the lookup function fail.
In eb_lookup_vmas(), eb->vma[i].vma is set to NULL if either the helper
function eb_lookup_vma() or eb_validate_vma() fails. eb->vma[i+1].vma is
set to NULL in case i915_gem_object_userptr_submit_init() fails; the
current one needs to be cleaned up by eb_release_vmas() at this point,
so the next one is set. If eb_add_vma() fails, neither the current nor
the next vma is set to NULL, which is a source of a NULL deref bug
described in the issue linked in the Closes tag.
When entering eb_lookup_vmas(), the vma pointers are set to the slab
poison value, instead of NULL. This doesn't matter for the actual
lookup, since it gets overwritten anyway, however the eb_release_vmas()
function only recognizes NULL as the stopping value, hence the pointers
are being set to NULL as they go in case of intermediate failure. This
patch changes the approach to filling them all with NULL at the start
instead, rather than handling that manually during failure.
(cherry picked from commit 08889b706d4f0b8d2352b7ca29c2d8df4d0787cd) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/a6xx: move preempt_prepare_postamble after error check
Move the call to preempt_prepare_postamble() after verifying that
preempt_postamble_ptr is valid. If preempt_postamble_ptr is NULL,
dereferencing it in preempt_prepare_postamble() would lead to a crash.
This change avoids calling the preparation function when the
postamble allocation has failed, preventing potential NULL pointer
dereference and ensuring proper error handling.
Patchwork: https://patchwork.freedesktop.org/patch/687659/ |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd/selftest: Check for overflow in IOMMU_TEST_OP_ADD_RESERVED
syzkaller found it could overflow math in the test infrastructure and
cause a WARN_ON by corrupting the reserved interval tree. This only
effects test kernels with CONFIG_IOMMUFD_TEST.
Validate the user input length in the test ioctl. |
| In the Linux kernel, the following vulnerability has been resolved:
block: Remove queue freezing from several sysfs store callbacks
Freezing the request queue from inside sysfs store callbacks may cause a
deadlock in combination with the dm-multipath driver and the
queue_if_no_path option. Additionally, freezing the request queue slows
down system boot on systems where sysfs attributes are set synchronously.
Fix this by removing the blk_mq_freeze_queue() / blk_mq_unfreeze_queue()
calls from the store callbacks that do not strictly need these callbacks.
Add the __data_racy annotation to request_queue.rq_timeout to suppress
KCSAN data race reports about the rq_timeout reads.
This patch may cause a small delay in applying the new settings.
For all the attributes affected by this patch, I/O will complete
correctly whether the old or the new value of the attribute is used.
This patch affects the following sysfs attributes:
* io_poll_delay
* io_timeout
* nomerges
* read_ahead_kb
* rq_affinity
Here is an example of a deadlock triggered by running test srp/002
if this patch is not applied:
task:multipathd
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
schedule_preempt_disabled+0x1c/0x30
__mutex_lock+0xb89/0x1650
mutex_lock_nested+0x1f/0x30
dm_table_set_restrictions+0x823/0xdf0
__bind+0x166/0x590
dm_swap_table+0x2a7/0x490
do_resume+0x1b1/0x610
dev_suspend+0x55/0x1a0
ctl_ioctl+0x3a5/0x7e0
dm_ctl_ioctl+0x12/0x20
__x64_sys_ioctl+0x127/0x1a0
x64_sys_call+0xe2b/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
task:(udev-worker)
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
blk_mq_freeze_queue_wait+0xf2/0x140
blk_mq_freeze_queue_nomemsave+0x23/0x30
queue_ra_store+0x14e/0x290
queue_attr_store+0x23e/0x2c0
sysfs_kf_write+0xde/0x140
kernfs_fop_write_iter+0x3b2/0x630
vfs_write+0x4fd/0x1390
ksys_write+0xfd/0x230
__x64_sys_write+0x76/0xc0
x64_sys_call+0x276/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: add VLAN id validation before using
Currently, the VLAN id may be used without validation when
receive a VLAN configuration mailbox from VF. The length of
vlan_del_fail_bmap is BITS_TO_LONGS(VLAN_N_VID). It may cause
out-of-bounds memory access once the VLAN id is bigger than
or equal to VLAN_N_VID.
Therefore, VLAN id needs to be checked to ensure it is within
the range of VLAN_N_VID. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83791d) Convert macros to functions to avoid TOCTOU
The macro FAN_FROM_REG evaluates its arguments multiple times. When used
in lockless contexts involving shared driver data, this leads to
Time-of-Check to Time-of-Use (TOCTOU) race conditions, potentially
causing divide-by-zero errors.
Convert the macro to a static function. This guarantees that arguments
are evaluated only once (pass-by-value), preventing the race
conditions.
Additionally, in store_fan_div, move the calculation of the minimum
limit inside the update lock. This ensures that the read-modify-write
sequence operates on consistent data.
Adhere to the principle of minimal changes by only converting macros
that evaluate arguments multiple times and are used in lockless
contexts. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: use global inline_xattr_slab instead of per-sb slab cache
As Hong Yun reported in mailing list:
loop7: detected capacity change from 0 to 131072
------------[ cut here ]------------
kmem_cache of name 'f2fs_xattr_entry-7:7' already exists
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 kmem_cache_sanity_check mm/slab_common.c:109 [inline]
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 __kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
CPU: 0 UID: 0 PID: 24426 Comm: syz.7.1370 Not tainted 6.17.0-rc4 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:kmem_cache_sanity_check mm/slab_common.c:109 [inline]
RIP: 0010:__kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
Call Trace:
__kmem_cache_create include/linux/slab.h:353 [inline]
f2fs_kmem_cache_create fs/f2fs/f2fs.h:2943 [inline]
f2fs_init_xattr_caches+0xa5/0xe0 fs/f2fs/xattr.c:843
f2fs_fill_super+0x1645/0x2620 fs/f2fs/super.c:4918
get_tree_bdev_flags+0x1fb/0x260 fs/super.c:1692
vfs_get_tree+0x43/0x140 fs/super.c:1815
do_new_mount+0x201/0x550 fs/namespace.c:3808
do_mount fs/namespace.c:4136 [inline]
__do_sys_mount fs/namespace.c:4347 [inline]
__se_sys_mount+0x298/0x2f0 fs/namespace.c:4324
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x8e/0x3a0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The bug can be reproduced w/ below scripts:
- mount /dev/vdb /mnt1
- mount /dev/vdc /mnt2
- umount /mnt1
- mounnt /dev/vdb /mnt1
The reason is if we created two slab caches, named f2fs_xattr_entry-7:3
and f2fs_xattr_entry-7:7, and they have the same slab size. Actually,
slab system will only create one slab cache core structure which has
slab name of "f2fs_xattr_entry-7:3", and two slab caches share the same
structure and cache address.
So, if we destroy f2fs_xattr_entry-7:3 cache w/ cache address, it will
decrease reference count of slab cache, rather than release slab cache
entirely, since there is one more user has referenced the cache.
Then, if we try to create slab cache w/ name "f2fs_xattr_entry-7:3" again,
slab system will find that there is existed cache which has the same name
and trigger the warning.
Let's changes to use global inline_xattr_slab instead of per-sb slab cache
for fixing. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: adreno: fix deferencing ifpc_reglist when not declared
On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist
if still deferenced in a7xx_patch_pwrup_reglist() which causes
a kernel crash:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
...
pc : a6xx_hw_init+0x155c/0x1e4c [msm]
lr : a6xx_hw_init+0x9a8/0x1e4c [msm]
...
Call trace:
a6xx_hw_init+0x155c/0x1e4c [msm] (P)
msm_gpu_hw_init+0x58/0x88 [msm]
adreno_load_gpu+0x94/0x1fc [msm]
msm_open+0xe4/0xf4 [msm]
drm_file_alloc+0x1a0/0x2e4 [drm]
drm_client_init+0x7c/0x104 [drm]
drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib]
drm_client_setup+0xb4/0xd8 [drm_client_lib]
msm_drm_kms_post_init+0x2c/0x3c [msm]
msm_drm_init+0x1a4/0x228 [msm]
msm_drm_bind+0x30/0x3c [msm]
...
Check the validity of ifpc_reglist before deferencing the table
to setup the register values.
Patchwork: https://patchwork.freedesktop.org/patch/688944/ |
| In the Linux kernel, the following vulnerability has been resolved:
scs: fix a wrong parameter in __scs_magic
__scs_magic() needs a 'void *' variable, but a 'struct task_struct *' is
given. 'task_scs(tsk)' is the starting address of the task's shadow call
stack, and '__scs_magic(task_scs(tsk))' is the end address of the task's
shadow call stack. Here should be '__scs_magic(task_scs(tsk))'.
The user-visible effect of this bug is that when CONFIG_DEBUG_STACK_USAGE
is enabled, the shadow call stack usage checking function
(scs_check_usage) would scan an incorrect memory range. This could lead
1. **Inaccurate stack usage reporting**: The function would calculate
wrong usage statistics for the shadow call stack, potentially showing
incorrect value in kmsg.
2. **Potential kernel crash**: If the value of __scs_magic(tsk)is
greater than that of __scs_magic(task_scs(tsk)), the for loop may
access unmapped memory, potentially causing a kernel panic. However,
this scenario is unlikely because task_struct is allocated via the slab
allocator (which typically returns lower addresses), while the shadow
call stack returned by task_scs(tsk) is allocated via vmalloc(which
typically returns higher addresses).
However, since this is purely a debugging feature
(CONFIG_DEBUG_STACK_USAGE), normal production systems should be not
unaffected. The bug only impacts developers and testers who are actively
debugging stack usage with this configuration enabled. |
| The Flat Shipping Rate by City for WooCommerce plugin for WordPress is vulnerable to time-based SQL Injection via the 'cities' parameter in all versions up to, and including, 1.0.3 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Shop Manager-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tilcdc: Fix removal actions in case of failed probe
The drm_kms_helper_poll_fini() and drm_atomic_helper_shutdown() helpers
should only be called when the device has been successfully registered.
Currently, these functions are called unconditionally in tilcdc_fini(),
which causes warnings during probe deferral scenarios.
[ 7.972317] WARNING: CPU: 0 PID: 23 at drivers/gpu/drm/drm_atomic_state_helper.c:175 drm_atomic_helper_crtc_duplicate_state+0x60/0x68
...
[ 8.005820] drm_atomic_helper_crtc_duplicate_state from drm_atomic_get_crtc_state+0x68/0x108
[ 8.005858] drm_atomic_get_crtc_state from drm_atomic_helper_disable_all+0x90/0x1c8
[ 8.005885] drm_atomic_helper_disable_all from drm_atomic_helper_shutdown+0x90/0x144
[ 8.005911] drm_atomic_helper_shutdown from tilcdc_fini+0x68/0xf8 [tilcdc]
[ 8.005957] tilcdc_fini [tilcdc] from tilcdc_pdev_probe+0xb0/0x6d4 [tilcdc]
Fix this by rewriting the failed probe cleanup path using the standard
goto error handling pattern, which ensures that cleanup functions are
only called on successfully initialized resources. Additionally, remove
the now-unnecessary is_registered flag. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Do not register unsupported perf events
Synthetic events currently do not have a function to register perf events.
This leads to calling the tracepoint register functions with a NULL
function pointer which triggers:
------------[ cut here ]------------
WARNING: kernel/tracepoint.c:175 at tracepoint_add_func+0x357/0x370, CPU#2: perf/2272
Modules linked in: kvm_intel kvm irqbypass
CPU: 2 UID: 0 PID: 2272 Comm: perf Not tainted 6.18.0-ftest-11964-ge022764176fc-dirty #323 PREEMPTLAZY
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-debian-1.17.0-1 04/01/2014
RIP: 0010:tracepoint_add_func+0x357/0x370
Code: 28 9c e8 4c 0b f5 ff eb 0f 4c 89 f7 48 c7 c6 80 4d 28 9c e8 ab 89 f4 ff 31 c0 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc cc <0f> 0b 49 c7 c6 ea ff ff ff e9 ee fe ff ff 0f 0b e9 f9 fe ff ff 0f
RSP: 0018:ffffabc0c44d3c40 EFLAGS: 00010246
RAX: 0000000000000001 RBX: ffff9380aa9e4060 RCX: 0000000000000000
RDX: 000000000000000a RSI: ffffffff9e1d4a98 RDI: ffff937fcf5fd6c8
RBP: 0000000000000001 R08: 0000000000000007 R09: ffff937fcf5fc780
R10: 0000000000000003 R11: ffffffff9c193910 R12: 000000000000000a
R13: ffffffff9e1e5888 R14: 0000000000000000 R15: ffffabc0c44d3c78
FS: 00007f6202f5f340(0000) GS:ffff93819f00f000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055d3162281a8 CR3: 0000000106a56003 CR4: 0000000000172ef0
Call Trace:
<TASK>
tracepoint_probe_register+0x5d/0x90
synth_event_reg+0x3c/0x60
perf_trace_event_init+0x204/0x340
perf_trace_init+0x85/0xd0
perf_tp_event_init+0x2e/0x50
perf_try_init_event+0x6f/0x230
? perf_event_alloc+0x4bb/0xdc0
perf_event_alloc+0x65a/0xdc0
__se_sys_perf_event_open+0x290/0x9f0
do_syscall_64+0x93/0x7b0
? entry_SYSCALL_64_after_hwframe+0x76/0x7e
? trace_hardirqs_off+0x53/0xc0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Instead, have the code return -ENODEV, which doesn't warn and has perf
error out with:
# perf record -e synthetic:futex_wait
Error:
The sys_perf_event_open() syscall returned with 19 (No such device) for event (synthetic:futex_wait).
"dmesg | grep -i perf" may provide additional information.
Ideally perf should support synthetic events, but for now just fix the
warning. The support can come later. |
| Connectify Hotspot 2018 contains an unquoted service path vulnerability in its ConnectifyService executable that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path in 'C:\Program Files (x86)\Connectify\ConnectifyService.exe' to inject malicious executables and escalate privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: avoid deadlock on fallback while reinjecting
Jakub reported an MPTCP deadlock at fallback time:
WARNING: possible recursive locking detected
6.18.0-rc7-virtme #1 Not tainted
--------------------------------------------
mptcp_connect/20858 is trying to acquire lock:
ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_try_fallback+0xd8/0x280
but task is already holding lock:
ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&msk->fallback_lock);
lock(&msk->fallback_lock);
*** DEADLOCK ***
May be due to missing lock nesting notation
3 locks held by mptcp_connect/20858:
#0: ff1100001da18290 (sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_sendmsg+0x114/0x1bc0
#1: ff1100001db40fd0 (k-sk_lock-AF_INET#2){+.+.}-{0:0}, at: __mptcp_retrans+0x2cb/0xaa0
#2: ff1100001da18b60 (&msk->fallback_lock){+.-.}-{3:3}, at: __mptcp_retrans+0x352/0xaa0
stack backtrace:
CPU: 0 UID: 0 PID: 20858 Comm: mptcp_connect Not tainted 6.18.0-rc7-virtme #1 PREEMPT(full)
Hardware name: Bochs, BIOS Bochs 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0x6f/0xa0
print_deadlock_bug.cold+0xc0/0xcd
validate_chain+0x2ff/0x5f0
__lock_acquire+0x34c/0x740
lock_acquire.part.0+0xbc/0x260
_raw_spin_lock_bh+0x38/0x50
__mptcp_try_fallback+0xd8/0x280
mptcp_sendmsg_frag+0x16c2/0x3050
__mptcp_retrans+0x421/0xaa0
mptcp_release_cb+0x5aa/0xa70
release_sock+0xab/0x1d0
mptcp_sendmsg+0xd5b/0x1bc0
sock_write_iter+0x281/0x4d0
new_sync_write+0x3c5/0x6f0
vfs_write+0x65e/0xbb0
ksys_write+0x17e/0x200
do_syscall_64+0xbb/0xfd0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7fa5627cbc5e
Code: 4d 89 d8 e8 14 bd 00 00 4c 8b 5d f8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 74 11 c9 c3 0f 1f 80 00 00 00 00 48 8b 45 10 0f 05 <c9> c3 83 e2 39 83 fa 08 75 e7 e8 13 ff ff ff 0f 1f 00 f3 0f 1e fa
RSP: 002b:00007fff1fe14700 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 00007fa5627cbc5e
RDX: 0000000000001f9c RSI: 00007fff1fe16984 RDI: 0000000000000005
RBP: 00007fff1fe14710 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000202 R12: 00007fff1fe16920
R13: 0000000000002000 R14: 0000000000001f9c R15: 0000000000001f9c
The packet scheduler could attempt a reinjection after receiving an
MP_FAIL and before the infinite map has been transmitted, causing a
deadlock since MPTCP needs to do the reinjection atomically from WRT
fallback.
Address the issue explicitly avoiding the reinjection in the critical
scenario. Note that this is the only fallback critical section that
could potentially send packets and hit the double-lock. |